Current Issue - May/June 2017 - Vol 20 Issue 4

Abstract

PDF
  1. 2017;20;E551-E561The Different Dynamic Changes of Nerve Growth Factor in the Dorsal Horn and Dorsal Root Ganglion Leads to Hyperalgesia and Allodynia in Diabetic Neuropathic Pain
    Animal Study
    Hui Ju, MD, Yi Feng, MD, and Zhifeng Gao, MD.

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and more than half of the patients with DPN have self-reported symptoms referring to painful diabetic neuropathy (PDN). Nerve growth factor (NGF) is a key factor for the nervous system, but the role of it in the neuropathic pain of diabetic patients is unclear.

OBJECTIVE: This study aimed to investigate the relationship between the dynamic expression of NGF in dorsal horn and dorsal root ganglion (DRG) of diabetic rats and hyperalgesia and allodynia in diabetic neuropathic pain. It also aimed to explore the effects of exogenous mouse NGF (mNGF) on NGF expression in dorsal horn, DRG, and mechanical pain threshold.

STUDY DESIGN: Animal research study.

SETTING: Experimental research laboratory.

METHODS: The model of diabetes was established by a single intraperitoneal injection of streptozocin (STZ 55 mg/kg). Firstly, the rats were randomly divided into 2 groups: control group (n = 10) and diabetes group (n = 40). The diabetes group contained 4 subgroups: diabetes week 1 group (DM1, n = 10), diabetes week 2 group (DM2, n = 10), diabetes week 4 group (DM4, n = 10), and diabetes week 8 group (DM8, n = 10). Then, the other rats were randomly divided into 2 groups: control group (n = 10) and treatment group (n = 30). The treatment group contained 3 subgroups: saline group (n = 10), low dose mNGF group (mNGF1, n = 10), and high dose mNGF group (mNGF2, n = 10). Mechanical pain threshold was assessed using Von Frey hairs, before the establishment of the diabetes model and 1, 2, 4, and 8 weeks after the establishment. The NGF expression in dorsal horn and DRG was measured by western blot.

RESULTS: The mechanical pain threshold decreased one week after the establishment of the diabetes model, which continued for 8 weeks. The NGF expression in the dorsal horn was reduced 2 weeks after diabetes induction and the decreased NGF expression continued for 4 weeks. However, the NGF expression in DRG was reduced one week after diabetes induction and remained at a low level for 8 weeks. Hyperalgesia occurred when the NGF expression in the DRG decreased and further reduction in the NGF expression in the dorsal horn caused concomitant allodynia. The mechanical pain threshold was significantly elevated 2 weeks after mNGF treatment.

LIMITATIONS: The course of diabetes should be much longer and there is not a precise analysis of the quantitative relation between the NGF expression in the dorsal horn/DRG and hyperalgesia/allodynia.

CONCLUSION: In diabetic neuropathic pain, the dynamic changes of the NGF expression in dorsal horn and DRG is involved in the development of hyperalgesia and allodynia respectively. Exogenous mNGF may relieve diabetic neuropathic pain by increasing the NGF expression in dorsal horn and DRG.

PDF