Systematic Review

Regional Analgesia Techniques Following Thoracic Surgery: A Systematic Review and Network Meta-analysis

Meijuan Yang, MD^1 , Xiaomei Zhang, MD^1 , Gang Liu, MD^1 , Xingwang Zhang, MD^1 , Wenjun Yan, MD^2 , and Dong Zhang, MD^2

From: ¹Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, People's Republic of China; ²Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, People's Republic of China

Address Correspondence: Dong Zhang, MD Department of Anesthesiology Gansu Provincial Hospital, Lanzhou, People's Republic of China E-mail: 553187441@qq.com

Disclaimer: This study was supported by grants from the Hospital Foundation of Gansu Provincial Hospital (21GSSYC-36) and (21GSSYC-49).

Conflict of interest: Each author certifies that he or she, or a member of his or her immediate family, has no commercial association (i.e., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

> Article received: 03-11-2024 Revised article received: 05-27-2024 Accepted for publication: 07-09-2024

Free full article: www.painphysicianjournal.com **Background:** Regional analgesia techniques have become the basis of multimodal analgesia for acute and chronic pain. They are widely used in thoracic surgery, but the best treatment is still uncertain.

Objectives: We aimed to compare and rank the effectiveness of regional analgesia techniques for thoracic surgery.

Study Design: A systematic review and network meta-analysis.

Methods: PubMed, MEDLINE, Embase, Cochrane Library, Science-Direct, and Web of Science were searched for articles published from inception through the end of January 2023. The network meta-analysis was conducted using Stata 15.1 software (StataCorp, LLC). The certainty of evidence was assessed by using Confidence in Network Meta-analysis (CINeMA https://cinema.ispm.unibe. ch/ A (unibe.ch). The primary outcome was cumulative opioid consumption within postoperative 24 hours. The secondary outcomes included pain scores at postoperative 6 hours, 12 hours, and 24 hours.

Results: A total of 32 trials with 1,996 patients and 11 techniques were included. No major network inconsistency or heterogeneity were found. Postoperative opioid consumption within postoperative 24 hours was decreased most by continuous extrapleural block (cEPB) (standardized mean difference [SMD] = 0.00; 95% CI,: 0.00-0.00), followed by continuous thoracic epidural analgesia (cTEA) and continuous serratus plane block (cSAPB). In the postoperative 6 hour analysis, pain scores were decreased most by cTEA (SMD = 0.16; 95% CI,: 0.05-0.49), followed by thoracic paravertebral block (TPVB) and ESPB (erector spinae plane block). In the postoperative 12 hour analysis, pain scores were decreased most by cSAPB (SMD = 0.12; 95% CI, 0.011.84), followed by TPVB and cTEA. In the postoperative 24 hour analysis, pain scores were decreased most by cSAPB and continuous thoracic paravertebral block (cTPVB).

Limitations: Our study has several limitations. First, 4 enrolled studies had a sample size of less than 40 patients. Second, the different regimens were potential factors contributing to heterogeneity, such as local anesthetic dose and volume, infusion time, infusion mode, adding adjuncts, and rescue analgesic regimens. Third, the number of primary and secondary outcomes is limited. Fourth, the number of randomized controlled trials for cEPB is limited.

Conclusions: The cTEA and cSAPB techniques are more likely to reduce the cumulative opioid consumption within 24 hours. The cTEA, cSAPB, ESPB techniques were more likely to improve pain at postoperative 6, 12, and 24 hours. Therefore, cTEA, cSAPB, and ESPB are the first choices for pain relief post thoracic surgery, whereas wound infiltration, intercostal block, continuous wound infiltration, and continuous intercostal block were less likely to be effective. We need more high-quality randomized controlled trials with larger sample sizes to validate our results and to determine the ideal regional analgesia technique and the optimal drug formula.

Key words: Thoracic, pain, epidural, analgesia, network meta-analysis, randomized controlled trial

Pain Physician 2024: 27:E803-E818

evere postoperative pain is frequently observed in patients who have undergone thoracic surgery., This pain leads to harmful cough and expectoration, disrupted sleep, stress, and interferes with recovery (1). Sufficient analgesia management should not only be defined as relieving pain, but also should consider the effect of analgesic interventions related to Enhanced Recovery after Surgery (ERAS) protocols, which include faster gastrointestinal recovery, earlier mobilization, earlier discharge, and other outcomes (2).

Numerous studies have documented regional analgesia techniques as the basis of multimodal analgesia mainly due to their improving patient comfort, reducing opioid consumption, and benefiting ERAS (3-5). Continuous thoracic epidural analgesia (cTEA) is a classic treatment for pain relief post thoracic surgery (6). In addition, the following techniques are also widely used: thoracic paravertebral block (TPVB) (7), intercostal block (ICB) (8), serratus plane block (SAPB) (9), erector spinae plane block (ESPB) (10), wound infiltration (WI) (11), continuous intercostal block of local anesthetics via a catheter (cICB) (12), continuous serratus plane block (cSAPB) (13), continuous thoracic paravertebral block (cTPVB) (14), continuous wound infiltration (cWI) (15), continuous extrapleural block (cEPB) (16), or a combination of these techniques.

Given the variety of regional analgesia techniques, the best choice to reduce postoperative pain and opioid consumption has been controversial. Previous traditional meta-analyses have been limited to pairwise analyses of 2 or 3 analgesia techniques,; none of them provided an evidence evaluation comparing all available treatment options together (17-24). The selection of regional analgesia techniques for thoracic surgery, therefore, is still influenced by clinical dogma, convenience, or institutional availability. To address this shortcoming, we performed a network meta-analysis (NMA) to combine direct and indirect evidence from trials to help better understand the merits of different interventions and provide objective rankings of various interventions based on the corresponding surface under the cumulative ranking curve (SUCRA).

Our NMA provides a more comprehensive evidence synthesis for the relative efficiency of different regional analgesia techniques after thoracic surgery. We will compare all commonly used regional analgesia techniques together on the same scale, unlike previous meta-analyses that were limited to pairwise comparisons.

METHODS

Literature Retrieval

Our study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO) and assigned the identification number CRD42020211357. We followed the Preferred Reporting Items for Systematic Reviews (PRISMA) Extension Statement for Network Meta-analyses (25). We searched PubMed, MEDLINE, Embase, Cochrane Library, Science-Direct, and Web of Science without language restriction for articles published from inception through the end of January 2023.

The search strategy was made up of key words and related synonyms: "thoracotomy," "thoracic surgery," "Video-Assisted Thoracic Surgery," "thoracic epidural analgesia," and "thoracic paravertebral block," "serratus plane block," "erector spinae plane block," "wound infiltration," "intercostal block," "extrapleural block." The full PubMed search strategy is shown in Supplementary Material One.

Eligibility Criteria

Inclusion Criteria

The inclusion criteria were designed according to patient, intervention, comparison, outcome, study (PICOS) criteria: P) patients undergoing thoracic surgery receiving regional analgesia techniques; I) regional analgesia techniques including cTEA, TPVB, SAPB, ESPB, WI, ICB, cSAPB, cEPB, cWI, cTPVB, cICB, or a combination of these techniques; C) one of these regional analgesic techniques, plus a placebo or no intervention; O) postoperative opioid consumption or pain score within the first postoperative 24 hours; S) randomized controlled trials (RCTs).

Exclusion Criteria

Study exclusion criteria were: 1) incomplete data which could not be used for statistical analysis; 2) unpublished studies, parallel and crossover randomized design studies; 3) duplicate data used for several studies and studies with incomplete data.

Outcome Measures

Primary Outcome Measures

The primary measured outcome was cumulative opioid consumption within the first postoperative 24 hours. Opioid consumption was converted to intravenous morphine milligram equivalent doses to allow comparison of different regimens.

Secondary Outcome Measures

The secondary outcomes included pain scores at postoperative 6 hours, 12 hours, and 24 hours. Pain scores were converted to the corresponding number on the 0-10 Visual Analog Scale (VAS), where 0 equates to no pain at all and 10 to the worst pain. We selected the maximum pain scale value from 0 h to 6 h after surgery as the VAS at 6 h, the maximum pain scale value from 7 h to 12 h as the VAS at 12 h, and the maximum pain scale value from 13 h to 24 h as the VAS at 24 h.

Literature Screening and Data Extraction

Assessment of Methodological Quality

We assessed the quality of eligible articles independently using either the Cochrane Collaboration's tool or Confidence in Network Meta-analysis (CINeMA 2.0.0, https://cinema.ispm.unibe.ch/ A (unibe.ch). Both are considered to be reliable tools and are used widely. The Cochrane Collaboration's tool measures random sequence generation, allocation concealment, performance bias, detection bias, attribution bias, reporting bias, and other biases (26). The CINeMA is used to evaluate confidence in NMA findings based on 6 domains: within-study bias, reporting bias, indirectness, imprecision, heterogeneity, and incoherence (27,28). Additionally, a comparison-adjusted funnel plot analysis was performed in order to detect any publication bias as well as the presence of any small study bias.

Data Collection

Two investigators sequentially reviewed all titles, abstracts, and then full texts. Any disagreements on eligibility between the 2 reviewers were resolved by a third reviewer. We extracted the relevant data from eligible literature; the accuracy was confirmed by 2 investigators. The relevant data were collected as follows: study name, authorship, country, and publication date; blinding (single blinding, double blinding, triple blinding, not reported); sample size; intervention description; control description; type of surgery (thoracotomy or video-assisted thoracic surgery [VATS]); pain assessment methods; the outcomes of pain scores and cumulative opioid consumption; and any rescue analgesic regimens.

Statistical Analysis

The variables were extracted as means \pm SDs for continuous variables. The data expressed as median and

interquartile range were converted to mean and SDs using the validated Luo's and Wan's formula (https:// www.math.hkbu.edu.hk/~tongt/papers/median2mean. html) (29,30). Statistical analysis was carried out in STATA 15.1 software (StataCorp, LLC), network package was used to conduct an NMA. The data were synthesized by network meta-analysis of random-effects model. The results were evaluated by standardized mean differences with Cls.

Network geometry maps provided visual and concise descriptions between pairs of interventions; nodes corresponded to analgesic interventions, the node size was the proportion of sample size; width of the lines was the number of trials comparing pairwise intervention. Consistency was evaluated by node-splitting inconsistency model and loop inconsistency model. CIs and their corresponding prediction intervals for all comparisons were used to judge the inherent imprecision and the results were summarized and presented in interval plots. Forest plots display study outputs and the results of global heterogeneity. We assessed statistical heterogeneity in each pairwise comparison with the I² statistic, τ^2 , and *P* value; I² > 50% was considered as statistical heterogeneity. Netleague tables were plotted in order to visualize the relative effectiveness of each intervention for a particular outcome. The SU-CRA was used to estimate the ranking probabilities for all interventions. A funnel plot was used to assess publication bias of every particular outcome. Additionally, a contribution matrix showed how much information each study contributed to the results from the network meta-analysis.

RESULTS

Search Results and Characteristics of Selected Studies

We identified a total of 1,083 potentially relevant records. The full-text manuscripts of the remaining 71 studies were assessed. After including studies from hand searches and a search revision, 32 trials with 11 analgesic techniques were included in this NMA (31-62). The process of literature selection is shown in Fig. 1. Table 1 shows the trial characteristics. A total of 1,609 patients were randomly assigned to an active analgesia technique and 387 to placebo.

The primary outcome was reported in 17 RCTs (31,32,35,37,38,40,42,43,44,46,47,50,51,53,54,59,6 0). Use of cTEA (32,33,36,47,49,52,54-56,60,62) and cTPVB (32,36,45,46,49,52,55,56,62) were the most

frequent interventions followed closely by TPVB (31,43,44,48,50,51,58,59). The technique of analgesia with single-shot or using a continuous catheter, were found in 32 and 26 treatment arms, respectively. The majority of RCTs were in patients undergoing VATS (31,32,34-43,45,46,48-51,54,58,59,61) followed by thoracotomy (33,44,47,52,53,55-57,60,62). The contribution matrix showed the proportion of direct evidences (Supplementary Material 2).

Risk of Bias Assessment

The risk of bias of every outcome was shown in Supplementary Material 3. Small study bias or any publication bias was not observed in the funnel plot (Supplementary material 4).

Results of Heterogeneity and Consistency

Forest plots of all directly compared treatments were carried out as shown in Supplementary Material 5, which showed that no global heterogeneity existed between trials and that the results support the consistency model.

For testing inconsistency between direct and indirect comparisons, excepting the result of node-splitting, showed that TPVB vs SAPB had a high risk of inconsistency on opioid consumption within postoperative 24 hours (Table 2); the other results did not show any significant inconsistency (Supplementary Material 6). Excepting the result of loop inconsistency showed that cTPVB and cSAPB VAS scores at postoperative 12 hours (Supplementary Material 6), as well as cTPVB and cSAPB and TPVB, ICB, and SAPB on opioid consumption within postoperative 24 hours (Fig. 2) had a high risk of inconsistency; the other results did not show any significant inconsistency (Supplementary Material 6). The interval plots estimated effect sizes and uncertainties for all pairwise comparisons (Supplementary Material 7).

Results of Pairwise and Network Metaanalysis

The absolute value difference of eligible comparisons for all outcomes are shown in the league table (Supplementary Material 8).

Primary Outcome

Cumulative Opioid Consumption Within Postoperative 24 Hours

This NMA included patients from 17 studies (31,32,35,37,38,40,42-44,46,47,50,51,53,54,59,60). The network geometry of eligible comparisons displayed complete, as all nodes could be connected (Fig. 3). The cEPB technique provides the best analgesia based on estimated probabilities (cEPB: 7.5%; cTEA: 10.8%; cSAPB: 14.5%; TPVB: 33.2%; cTPVB: 35.3%; SAPB: 54%; ICB: 60.8%; ESPB: 71.2%; cWI: 75.5%, control: 90.2%; and WI: 96.9%) (Fig. 4).

Secondary outcomes

Visual Analog Scale at Postoperative 6 Hours

This NMA included 1,134 patients from 20 studies (31,33, 38-42.44,45,47,48,50,52,55-58,60-62). The network geometry of eligible comparisons displayed complete, as all nodes could be connected (Supplementary Material 9). The cTEA technique seemed to be the best for analgesia among all the treatments. The SUCRA values established a hierarchy for the 9 treatments: cTEA: 23.1%; TPVB: 23.3%; ESPB: 28.8%; SAPB:

Table 1. Characte	ristics of	included studie:	s.						
References	Year	Country	Blinding	ASA	Surgery	Comparison (n)	Analgesic Technique	Rescue Analgesic Regimen	Pain Assessment Scale
Baytar, et al	1000	Republic of	,	1 11	011 121	SAPB (31): 0.25% bupivacaine 0.4 mL/kg (max 20 mL)	U 31 I	۸ ۳۰۰۳ L. L	U VII
(31)	1707	Turkey	7	11-1	VAIS	TPVB (31): 0.25% bupivacaine 0.4 mL/kg (max 20 mL)	560	Iramadol PCIA	CAV
		Peopleš				cTEA (39): 0.1% ropivacaine 300ml (loading dose of 5 ml, background dose of 5 ml/h, locking time of 20 min)	Landmark- guided		
(32)	2020	Republic of China	2	III-II	VATS	cTPVB (32): 0.2% ropivacaine 300 mL (loading dose of 0.5 mg/kg, background dose of 0.25 mg/kg/h, PCA of 0.25 mg/kg, lockout time of 60 min)	NSG	(LV) Introproten and opioids	NRS-11
Vilvanathan, et al (33)	2020	Republic of India	NR	III-I	thoracotomy	cTEA (25): loading dose of 0.25% bupivacaine 5-10 mL, background dose of 0.1% bupivacaine + 2 µg/ml fentanyl, 5 - 8 mL/h over a period of 20 min toward the end of the surgery	Landmark- guided	(IV) morphine 2 mg if patient reported pain and NRS-11 > 5	NRS-11
						ICB (25): T3-T8 intercostal spaces; 0.25% bupivacaine 20 mL	thoracoscopic assistance	4	
		11				SAPB (46): 0.3% ropivacaine 30 mL			
Viti, et al (34)	2020	ntauan Republic	7	III-I	VATS	Control (44): no block without placebo or sham procedure	USG	(1V) Ketorolac 50 mg or tramadol 100 mg	NRS-11
Finnerty, et al	2020	Republic of	2	III-I	VATS	ESPB (30): 0.25% levobupivacaine* 30 mL	DSG	(IV) oxycodone 1-2 mg if VRS	VRS
(cc)		Ireland				SAPB (30): 0.25% levobupivacaine 30 mL		> 2 °	
		People's	Ę		3-L V11	cTEA (30): 0.25% ropivacaine 100 mL, loading dose of 0.5 mL, background dose of 2 mL/min, lockout time of 15 min.	Landmark- guided	Ę	3 4 21
Wel, et al (30)	0707	China		111-1	CITA	cTPVB (30): 0.25% ropivacaine 100 mL, loading dose of 0.5 mL, background dose of 2 mL/min, lockout time of 15 min	USG		CAV
i		Peoples				ICB (24): T4-T9 intercostal spaces, 0.375% ropivacaine 20 mL		(IV) oxycodone if	
Chen, et al (57)	2020	kepublic of China	.7	II-I	VATS	TPVB (24): T5-T7, 0.375% ropivacaine 20 mL	USG.	VAS > 3	VAS
						ESPB (24): T5; 0.375% ropivacaine 20 mL			

Regional Analgesia Techniques Following Thoracic Surgery

Table 1 cont. Chu	uracteristie	cs of included st	udies.						
References	Year	Country	Blinding	ASA	Surgery	Comparison (n)	Analgesic Technique	Rescue Analgesic Regimen	Pain Assessment Scale
Lee, et al (38)	2020	Republic of Korea	7	III-I	VATS	ICB (23): 0.375% ropivacaine 20mL	thoracoscopic assistance	ketorolac 30mg, if NRS-11 = 4 or 5; (IV) fentanyl 50	NRS-11
						SAPB (23): 0.375% ropivacaine 20mL	DSG	µg, 11 NKS-11 ≥ 0	
Gaballah, et al	2019	Arab Republic of Fount	1	II-I	VATS	ESPB (30): 0.25% levobupivacaine* 20 mL	USG	(IV) ketorolac 30 mg, if VAS ≥ 4; if no improvement	VAS
		-1/Q				SAPB (30): 0.25% levobupivacaine 20 mL		within 15 minutes, pethidine 0.5 mg/kg	
(07) [0100	Republic of	ç	1		Control (43): normal saline	Corr	tramadol 75 mg or oxycodone 10 mg every 12 h, if NRS-11 ≥ 4; (IV) pethidine	
Num, et al (40)	8107	Korea	n	11-1	SIAV	SAPB (42): 0.375% ropivacaine 0.4 mL/kg	560	25 mg, tramadol 50 mg, or oxycodone 5 mg, if persistent NRS-11 ≥ 4.	11-0NN
Dark et al (41)	2018	Republic of	6	1-11	VATS	Control (42): no block without placebo or sham procedure	9311	(IV) ketorolac 15 mg every 6 h for the next 24 h, (ORAL)	NRS-11
(11) III 12 (VIII)	0107	Korea	2	11-1		SAPB (42): 0.375% ropivacaine 30 mL	2	hydromorphone 8 mg the following morning	TI-OUNT
Öl-man at al		Douthlin of				SAPB (20): 0.25% bupivacaine 20 mL		actioninon 1 a	
(42) (42)	2018	Turkey	1	III-I	VATS	Control (20): no block without placebo or sham procedure	USG	if VAS > 5	VAS
142. 24 -1 (42)	9100	People's nti:f	ç	111 1	274750	ICB (32): 0.5% ropivacaine + 1/200 000 epinephrine, 0.3mL/kg	COLL	v tor l:	3 V I I
Wu, cl al (±))	0107	China	4	111-1	CIUA	TPVB (34): 0.5% ropivacaine + 1/200 000 epinephrine, 0.3mL/kg	2	Sutchian F CLA	CUA
						SAPB (30): 0.5% bupivacaine 30 mL			
Saad. et al (44)	2018	Arab Republic	2	11-1	thoracotomy	TPVB (30): T5; 0.5% bupivacaine 20ml	USG	ketorolac 30 mg, it VAS > 4: morphine	VAS
		of Egypt		1		Control (30): no block without placebo or sham procedure		3mg, if VAS > 5	-

Pain Physician: November 2024 27:E803-E818

Table 1 cont. Ch	aracteristi	ics of included s	tudies.						
References	Year	Country	Blinding	ASA	Surgery	Comparison (n)	Analgesic Technique	Rescue Analgesic Regimen	Pain Assessment Scale
-						cTPVB (26): loading dose of 0.375% ropivacaine 20 mL, background dose of 0.2% ropivacaine 5 mL/h for 48 h		flurbiprofen axetil and pentazocine or loxoprofen {Savannah—	
Kadomatsu, et al (45)	2018	Japan	NR	NR	VATS	cICB (24): 2 intercostal spaces; loading dose of 0.375% ropivacaine 10 mL to each space, background dose of 0.2% ropivacaine 5 mL/h for 48 h	thoracoscopic assistance	loxoprofen not approved in the US} sodium hydrate and diclofenac sodium suppository	VAS
Hutchins, et al	50	United States	Ę	11	UT AT	cTPVB (23): 0.2% ropivacaine 0.4 mg/kg/h, a rate between 10 mL/h and 14 mL/h	DSU	hydromorphone	
(46)	/107	of America	NK	111-1	SIAV	ICB (25): 0.25% or 0.5% bupivacaine	thoracoscopic assistance	PCIA	11-CAN
Khalil, et al 47	2017	United States	5	III-II	thoracotomy	cSAPB (20): loading dose of 0.25% levobupivacaine{Savannah—withdrawn from US market} 30 mL, background dose of 0.125% levobupivacaine 5 mL/h	USG	(IV) morphine 0.1 mg/kg then titration of one mg/15min	VAS
(4/)		of America				cTEA (20): loading dose of 0.25% levobupivacaine 15 mL, background dose of 0.125% levobupivacaine 5 mL/h	Landmark- guided	as required to keep VAS < 3	
						TPVB (20): T5-T7; 0.50% ropivacaine 20ml			
Zhang, et al (48)	2016	People's Republic of	5	III-I	VATS	TPVB (20): T5-T7; 0.50% ropivacaine+ sufentanil 5µg, 20 mL	DSG	(IM) tramadol hydrochoride 100	NRS-11
		China				Control (20): no block without placebo or sham procedure		mg, if NRS > 4	
Okajima, et al (49)	2015	Japan	NR	III-I	VATS	cTEA (33): 150 mL (0.1 % ropivacaine + 0.6 mg fentanyl), 4 mL/h for 36 h, when weight > 65 kg; 75 mL (0.1 % ropivacaine + 0.6 mg fentanyl), 2 mL/h for 36 h, when weight \leq 65 kg	Landmark- guided	(IV) fentanyl	NRS-11
						cTPVB (36): T4, 220 mL (0.1 % ropivacaine + 0.6 mg fentanyl), 6 mL/h for 36 h	DSG		
		People's				TPVB (20): T4-T7; 0.375% ropivacaine 20 mL	Tandanal		
Chen, et al (50)	2015	Republic of China	NR	II-II	VATS	Control (20): no block without placebo or sham procedure	guided	dezocine* PCIA	VAS
Zhang, et al		People's	,			TPVB (31): T4,T7; 0.5% ropivacaine 8 mL	thoracoscopic		
(51)	2015	Republic of China	3	I-II	VATS	WI (30): 0.5% ropivacaine (max 40 mL)	assistance	morphine PCIA	VAS

Regional Analgesia Techniques Following Thoracic Surgery

Table 1 cont. <i>Cht</i>	uracteristi	cs of included st	udies.						
References	Year	Country	Blinding	ASA	Surgery	Comparison (n)	Analgesic Technique	Rescue Analgesic Regimen	Pain Assessment Scale
Kobayashi, et	610C	-	Ę			cTEA (35): loading dose of 0.2 % ropivacaine 5 mL, then 84 mL (0.2 % ropivacaine+ fentanyl 800 μg), 5 mL/h	Landmark- guided	Ę	U V21
al (52)	\$107	Japan	NK	11-1	thoracotomy	cTPVB (35): loading dose 0.375% ropivacaine 10 mL, then 84 mL (0.2 % ropivacaine+ fentanyl 800 μg), 5 mL/h	thoracoscopic assistance	NK	ζΑγ
		-				cTPVB (44): 0.2% ropivacaine 0.3 mg/kg/h for 48 h			
Fortier, et al (53)	2012	French Republic	ΟΓ	III-II	thoracotomy	cWI (46): 0.2% ropivacaine 4 mL/h for 48 h $$	thoracoscopic assistance	morphine PCIA	VAS
						Control (50): no block without placebo or sham procedure			
	1106	Torne	5	11 1	3.1.7.1	cTEA (20): loading dose of 0.75% ropivacaine 5mL, then 0.2% ropivacaine 4mL/h, for a period of 60 h	Landmark- guided		S VI
110114, 51 41 (J4)	1107	Japan	OL	11-1	CIEA	cEPB (20): loading dose of 0.75% ropivacaine 5mL, then 0.2% ropivacaine 4mL/h, for a period of 60 h	thoracoscopic assistance		CAV
						cTEA (16): 200 mL (0.25% levobupivacaine* + 20 µg/mL morphine), background dose of 0.1 mL/kg/h for 48 h, PCA of 0.1mL/kg, lockout time of one h		(A)	
Pintaric, et al (55)	2011	Republic of Slovenia	NR	III-II	thoracotomy	cTPVB (16): 200 mL (0.25% levobupivacaine + 20 μg/mL morphine), background dose of 0.1 mL/kg/h for 48 h, PCA of 0.1 mL/kg. lockout time of one h	Landmark- guided	piritramide** 3 mg,if VAS > 4	VAS
Messina, et al	0000	Italian				cTEA (12): 0.125% levobupivacaine* + 2 μg/ mL fentanyl, 0.08 mL/kg/h	Landmark-	, T.C.C.	UVII
(56)	6007	Republic	YIN	111-11	unoracotomy	cTPVB (12): 0.25% levobupivacaine + 1.6 µg/mL fentanyl, 0.1 mL/kg/h	guided	morphine rCIA	CAV
D'Andrilli et al.		Italian	ţ	ţ		ICB (60): T4-T8; 0.75% ropivacaine 4 mL to each intercostal space	Landmark-	(IV) propacetamol	
(57)	2006	Republic	NK	NK	thoraacotomy	Control (60): no block without placebo or sham procedure	guided	(acetaminophen) chlorhydrate one g	VAS
		Republic of	¢			TPVB (25): T4-T8; 4 mL (0.5% bupivacaine + 1:200,000 epinephrine) to each space	Landmark-		
kaya, et al (oc)	2000	Ťurkey	7	III-I	CIAV	Control (22): no block without placebo or sham procedure	guided	morphine PUIA	CAV

Pain Physician: November 2024 27:E803-E818

									Pain
References	Year	Country	Blinding	ASA	Surgery	Comparison (n)	Analgesic Technique	Kescue Analgesic Regimen	Assessment Scale
Trant of al (E0)	3005	Swiss	đIA	111 1	3:1, V/X	TPVB (20): 0.375% bupivacaine + 1:200 000 adrenaline, 0.4 mL/kg	Landmark-		3 7 7
vogh et al (22)	C007	Confederation	AN	111-1	CITA	Control (20): no block without placebo or sham procedure	guided	morphille F CLA	CLAY
Debreceni, et		:		5	·	cTEA (25): loading dose of 0.25% bupivacaine 0.2 mL/kg, background dose of 0.25% bupivacaine 5 mL/h	Landmark- guided	the infusion rate was increased to 10 mL/h, if VAS > 4; (IV) fentanyl 100	
al (60)	2003	Hungary	7	NK	thoracotomy	ICB (22): loading dose of 0.25% bupivacaine 0.2 mL/kg, background dose of 0.25% bupivacaine 5 mL/h	thoracoscopic assistance	ug, it the pertusion dose of bupivacaine exceeded the maximum allowable value	VAS
Bolotin, et al	2000	State of Israel	NR	NR	VATS	ICB (16): T2-T4 intercostal space; 0.5% bupivacaine 3mL to each space	thoracoscopic	NR	VAS
(10)						Control (16): normal saline	assistance		
						ICB (15): T3-T7 intercostal space; 0.5% bupivacaine 16 mL	uoagrus		
Perttunen, et	1995	Republic of Finland	NR	III-I	thoracotomy	cTEA (15): loading dose of 0.25% bupivacaine 8-12 mL according to height, background dose of 4 -8 mL/h according to height	Landmark- guided	morphine PCIA	VAS
						cTPVB (25): loading dose of 0.25% bupivacaine 8-12 mL according to height, background dose of 4 -8 mL/h according to height	surgeon		

plane block. ESPB, erector spinae plane block. WI, wound infiltration. ICB, intercostal block. cSAPB, continuous serratus plane block. cEPB, continuous extrapleural block. cWI, continuous wound infiltration. cTPVB, continuous thoracic paravertebral block. cICB, continuous intercostal block. USG, Ultrasonography. PCIA, patient-controlled intravenous analgesia. IV, intravenous. VAS, visual analog scale. NRS, numeric rating scale. VRS, verbal rating scale. * This medication was withdrawn from US market.

g• 1	Din	rect	Ind	irect	Diffe	rence	
Side	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	r>z
A C	-12.8	3.103104	-13.18901	3.676871	0.3890139	4.811303	0.936
A F	-3.399997	3.142043	-3.408554	4.18526	0.0085569	5.233434	0.999
A G	-16.55378	2.560013	-9.462812	2.719406	-7.090968	3.769552	0.06
A I	-5.929276	2.636932	-11.66357	3.121999	5.734291	3.995488	0.151
BC	6.62377	2.228015	9.118068	9.199425	-2.494298	9.465487	0.792
B D *	-1.4	3.553614	39.46077	442.7658	-40.86077	442.7838	0.926
B E *	0.6999998	2.993411	39.47863	230.967	-38.77863	230.9884	0.867
ВH	15.19996	8.599666	12.47653	4.029925	2.723425	9.497081	0.774
C F	9.400005	3.149398	9.848806	4.268324	-0.4488007	5.30446	0.933
СН	8.59987	9.373808	5.885726	3.321805	2.714144	9.94498	0.785
GH	7.124097	2.479116	5.051839	2.788644	2.072258	3.727514	0.578
GI	1.307441	0.4983268	7.867401	1.175762	-6.55996	1.277006	0 \$
GJ	8.999801	3.575253	7.132666	4.10327	1.867134	5.44233	0.732
GK*	19.6	6.062134	26.30099	1326.752	-6.700988	1326.762	0.996
ΗI	0.0999999	2.858731	-2.552014	2.889236	2.652014	4.064485	0.514
НJ	2.699961	3.737639	1.093994	4.123063	1.605967	5.565027	0.773
IJ	-16.49998	12.88638	4.350332	2.8686	-20.85031	13.20181	0.114

Table 2. Inconsistency of cumulative opioid consumption within postoperative 24 hours

* Warning: all the evidence about these contrasts come from the trials which directly compare them.

\$ - Nodes highlighted in red had evidence of inconsistency.

Treatment groups are: A - Control. B - cTEA, continuous thoracic epidural analgesia. C - cTPVB, continuous thoracic paravertebral block. D - cEPB, continuous extrapleural block. E - cSAPB, continuous serratus plane block. F - cWI, continuous wound infiltration. G - TPVB, thoracic paravertebral block. H - ICB, intercostal block. I - SAPB, serratus plane block. J - ESPB, erector spinae plane block. K - WI, wound infiltration.

Fig. 2. Loop-specific approach of cumulative opioids consumption within $24\ hours$

cTEA, continuous thoracic epidural analgesia. TPVB, thoracic paravertebral block. SAPB, serratus plane block. ESPB, erector spinae plane block. ICB, intercostal block. cWI, continuous wound infiltration. cTPVB, continuous thoracic paravertebral block. 34.3%; cTPVB: 50.9%; ICB: 58.7%; cSAPB: 17.8%; cICB: 66.5%; and control: 71.9% (Supplementary Material 10).

Visual Analog Scale at Postoperative 12 Hours

This NMA included 776 patients from 12 studies (31,33,34,38,39,41,42,44,47,57, 58,60). The network geometry of eligible comparisons displayed complete, as all nodes could be connected (Supplementary Material 9). The cSAPB technique seemed to be the best for analgesia among all the treatments. The SUCRA values established a hierarchy for the seven treatments: cSAPB: 25.5%; TPVB: 29.1%; cTEA: 33.5%; ESPB: 45.6%; ICB: 58.4%; SAPB: 62.3%; and control: 95.7% (Supplementary Material 10).

VAS at 24 hour

This NMA included 1,155 patients from 20 studies (31,33-35,38,41,42,44-

48,50,52,55-58,60,62). The network geometry of eligible comparisons displayed complete, as all nodes could be connected (Supplementary Material 9). The ESPB technique seemed to be the best for analgesia among all the treatments. The SUCRA values established a hierarchy for the 9 treatments: ESPB: 5.2%; cSAPB: 27.9%; cTPVB: 31.7%; cTEA: 40.9%; SAPB: 56.6%; TPVB: 57.4%; ICB: 58.1%; cICB: 75.6%; and control: 96.6% for (Supplementary Material 10).

DISCUSSION

Our systematic review and NMA demonstrates that all treatments (cTEA, TPVB, SAPB, ESPB, WI, ICB, cSAPB, cEPB, cWI, cTPVB, cICB) reduced pain post thoracic surgery compared with either placebo or no intervention. Our results suggest that the cTEA, cSAPB, and ESPB techniques were more effective in reducing pain scores at 6, 12, and 24 hours, respectively. The cEPB technique was ranked first out of all the treatments for the smallest cumulative opioid consumption within

Fig. 3. Network geometry of cumulative opioids consumption within 24 hours postoperative cTEA, continuous thoracic epidural analgesia. TPVB, thoracic paravertebral block. SAPB, serratus plane block. ESPB, erector spinae plane block. WI, wound infiltration. ICB, intercostal block. cSAPB, continuous serratus plane block. cEPB, continuous extrapleural block. cWI, continuous wound infiltration. cTPVB, continuous thoracic paravertebral block. cICB, continuous intercostal block.

Fig 4. Surface under the cumulative ranking curve (SUCRA) rankings of cumulative opioid consumption within postoperative 24 hours.

Control (90.2%). wound infiltration (96.9%). cWI, continuous wound infiltration (75.5%). ESPB, erector spinae plane block (71.2%). ICB, intercostal block (60.8%). SAPB, serratus plane block (54%). cTPVB, continuous thoracic paravertebral block (35.3%). TPVB, thoracic paravertebral block (33.2%). cSAPB, continuous serratus plane block (14.5%). cTEA, continuous thoracic epidural analgesia (10.8%). cEPB, continuous extrapleural block (7.5%).

postoperative 24 hours, but only one of the included studies compared the effectiveness of cEPB and cTEA (40 patients) (54). Further research is needed in order to determine whether the effectiveness of cEPB is superior to cTEA and cSAPB.

A recent network meta-analysis (63) determined that TPVB generated the best analgesic effectiveness post-VATS; ESPB provided a comparable analgesic effectiveness with TPVB, but SAPB and ICB were not superior. These results were similar to ours. We speculate that TPVB and ESPB provide both visceral and somatosensory blockade. We also found ICB, cICB, WI and cWI had the highest probability of being the worst techniques; this can be explained by these treatments only affecting wound pain.

Postoperative pain continues to be a concern in clinical practices, as it seriously affects quality of life and a patient's prognosis. The TEA technique was once considered as the gold standard for pain management. However, it was gradually replaced by other regional and local analgesia techniques because they had similar analgesic effects without the potential risks of TEA, such as hypotension, bradycardia, pruritis, dural perforation, and epidural hematoma or epidural abscess in rare cases or urinary retention in rare cases (6,64).

The TPVB technique produces unilateral, somatic, and sympathetic nerve blockade in multiple contiguous thoracic dermatomes; it provides inferior analgesia compared with TEA but has a lower number of potential risks (17).

The ESPB technique provides superior analgesia to SAPB, ICB and WI because it blocks both dorsal and ventral rami of the thoracic spinal nerves and provides some degree of sympathetic blockade (65). The SAPB technique provides analgesia in the chest wall by blocking the lateral branches of the thoracic intercostal nerves, usually between the T2-T9 levels (66). The ICB technique is reported to be effective in improving pain; performing it is safe and simple, but it requires multiple injections (12). The cEPB technique results in unilateral and multiple blockade of intercostal nerves with a minimal risk of spinal injury, which could be considered a good alternative to cTEA post VATS (16). WI is a safe and effective fast-track approach for patients undergoing thoracotomy surgery (67).

A previous meta-analysis found that TPVB (18), SAPB (19-21), and ESPB (22-24) significantly reduced postoperative pain when compared with control groups in patients undergoing thoracic surgery. Xu and colleagues' (17) meta-analysis determined that TPVB did not provide superior analgesia compared with TEA, but TPVB reduced side effects.. Balzani and colleagues' (68) meta-analysis showed that almost all peripheral regional anesthesia techniques were effective on reducing postoperative 24-hour opioid consumption. Huan and colleagues' (69) meta-analysis determined that TPVB provides better analgesia and causes lower consumption of morphine when compared with ICB (69). The above conclusions were similar to our results, but they are limited in scope regarding treatments and pairwise comparisons.

Given that neither pairwise comparisons nor network comparisons demonstrated a common treatment to be the best choice for reducing postoperative pain within 24 hours, other considerations should be taken into account when selecting an analgesic technique, such as adding adjuncts to local anesthetics and improving the infusion mode. Administering adjuncts is an attractive and simple strategy to increase the mean duration of analgesia beyond the conventional maximum of 8-14 hours (70). Zhang and colleagues' (71) trial determined that adding perineural dexmedetomidine and dexamethasone to ropivacaine for ICB prolonged analgesia with almost no adverse effects (71). Gao and colleagues' (72) trial determined that using dexmedetomidine (one µg/kg) as an adjuvant of ESPB with ropivacaine prolonged sensory block duration, provided effective acute pain control, and required less rescue analgesia and shorter hospital stays when compared with dexamethasone (10 mg). However, dexmedetomidine and dexamethasone cannot fulfill all the criteria of the ideal local anesthetic adjunct. Dexmedetomidine can cause bradycardia, hypotension, and sedation, while dexamethasone slightly increases glycemia (70). In addition, the safety of perineural adjuncts continues to be a concern, as the findings of a neurotoxic effect associated with perineural dexmedetomidine during in vitro studies are conflicting (70). Interestingly, existing evidence shows that a local anesthetic administered as a programmed intermittent bolus infusion provides a wider sensory blockade and superior analgesia to a continuous infusion post cTPVB in patients undergoing VATS (73,74). However, the effect of programmed intermittent bolus infusion in cTEA, cEPB, cSAPB, cICB, cWI were not analyzed, but if the analgesia were more efficient, then programmed intermittent bolus infusion would be a recommended choice.

Our systematic review and NMA includes as many regional analgesia techniques as possible and synthesized data from both direct comparison trials and indirect evidence. This method increased the precision of effect estimates and also helped rank the treatments. Other strengths include the comprehensive literature search and using CINeMA to assess risk of bias for every comparison.

Limitations

There are several potential limitations in our NMA, many of which are inherent to NMAs. First, 4 enrolled studies had a sample size less than 40 patients, which are categorized as smaller studies with a high risk of sampling errors. Therefore, we performed a comparison-adjusted funnel plot to detect any small study effect bias.

Second, these different regimens are potential factors contributing to heterogeneity for the same treatment between 2 studies, such as drugs doses and injection volumes, infusion time (preoperative, intraoperative, and postoperative), infusion mode (single-shot or continuous injection), adding adjuncts (clonidine, dexmedetomidine, dexamethasone), and rescue analgesic regimens. We attempted to minimize this effect by conducting subgroup analyses, but it was not implemented because of the sparsity of data. We speculate that those differences contributed to inconsistency on the results of loops of control-TPVB-SAPB on VAS at postoperative 12 hours, and control-TPVB-SAPB and TPVB-ICB-SAPB on opioid consumption within 24 hours postoperative.

Third, we only focused on short-term outcomes (resting VAS and opioid consumption within 24 hours postoperative), but in fact, these outcomes were also important in effectiveness evaluation such as specific adverse effects, pain scores on movement, patient comfort, recovery of lung function, postoperative nausea and vomiting, hospital length of stay, and healthrelated quality of life.

Finally, owing to the limited number of RCTs for cEPB, we need high-level evidence to determine the effectiveness of this technique.

CONCLUSIONS

In conclusion, our systematic review and NMA demonstrates that there is no common treatment determined to be the best choice for reducing acute pain after thoracic surgery, but cTEA and cSAPB are more likely to reduce the cumulative opioid consumption within 24 hours postoperative, while cTEA, cSAPB, ESPB were more likely to improve pain at postoperative 6, 12, 24 hours, respectively. Therefore, cTEA, cSAPB, and ESPB are the first choices for pain relief post thoracic surgery, whereas ICB, cICB, WI and cWI were less likely to be effective. More high-quality RCTs with larger sample sizes are needed to validate our results and to get the ideal regional analgesia technique and the optimal drug formula in the future.

Author Contributions

The concept and study was designed by YMJ and ZD. Statistical analysis was performed by ZXM, LG and ZXW. Manuscript preparation was performed by YMJ and ZD. Manuscript revision was performed by YWJ and ZD. All authors contributed to preparation of the manuscript, and they reviewed and approved the final version's content.

REFERENCES

- 1. Marshall K, McLaughlin K. Pain management in thoracic surgery. *Thorac Surg Clin* 2020; 30:339-346.
- Simpson JC, Bao X, Agarwala A. Pain management in Enhanced Recovery after Surgery (ERAS) protocols. Clin Colon Rectal Surg 2019; 32:121-128.
- Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS[®]) Society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardiothorac Surg 2019; 55:91-115.
- Piccioni F, Droghetti A, Bertani A, et al. Recommendations from the Italian intersociety consensus on Perioperative

Anesthesa Care in Thoracic surgery (PACTS) Part 2: Intraoperative and postoperative care. *Perioper Med* (Lond) 2020; 9:31.

- Berna P, Quesnel C, Assouad J, et al. Guidelines on enhanced recovery after pulmonary lobectomy. Anaesth Crit Care Pain Med 2021; 40:100791.
- Yeung JH, Gates S, Naidu BV, Wilson MJ, Gao Smith F. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. *Cochrane Database Syst Rev* 2016; 2:CD009121.
- Sugiyama T, Kataoka Y, Shindo K, et al. Retrolaminar block versus paravertebral block for pain relief after less-invasive lung surgery: A randomized, noninferiority controlled trial. Cureus 2021;

13:e13597.

- Corsini EM, Mitchell KG, Zhou N, et al. Liposomal bupivacaine intercostal block is important for reduction of pulmonary complications. Ann Thorac Surg 2021; 112:423-429.
- Kim S, Bae CM, Do YW, Moon S, Baek SI, Lee DH. Serratus anterior plane block and intercostal nerve block after thoracoscopic surgery. Thorac Cardiovasc Surg 2021; 69:564-569.
- Turhan Ö, Sivrikoz N, Sungur Z, Duman S, Özkan B, Şentürk M. Thoracic paravertebral block achieves better pain control than erector spinae plane block and intercostal nerve block in thoracoscopic surgery: A randomized study. J Cardiothorac Vasc Anesth 2021;

35:2920-2927.

- Yang HC, Lee JY, Ahn S, et al. Pain control of thoracoscopic major pulmonary resection: Is pre-emptive local bupivacaine injection able to replace the intravenous patient controlled analgesia? J Thorac Dis 2015; 7:1960-1969.
- Deng W, Liu F, Jiang CW, et al. Continuous rhomboid intercostal block for thoracoscopic postoperative analgesia. Ann Thorac Surg 2021; 114;319-326.
- Hanley C, Wall T, Bukowska I, et al. Ultrasound-guided continuous deep serratus anterior plane block versus continuous thoracic paravertebral block for perioperative analgesia in videoscopic-assisted thoracic surgery. Eur.J Pain 2020; 24:828-838.
- Ma H, Song X, Li J, Wu G. Postoperative pain control with continuous paravertebral nerve block and intercostal nerve block after two-port videoassisted thoracic surgery. Wideochir Inne Tech Maloinwazyjne 2021; 16:273-281.
- Paladini G, Di Carlo S, Musella G, et al. Continuous wound infiltration of local anesthetics in postoperative pain management: Safety, efficacy and current perspectives. J Pain Res 2020; 13:285-294.
- Larsson M, Öwall A, Sartipy U, Franco-Cereceda A, Johansson B, Jakobsson JG. Continuous surgical multi-level extrapleural block for video-assisted thoracoscopic surgery: A retrospective study assessing its efficacy as pain relief following lobectomy and wedge resection. F1000Res 2018; 7:1783.
- Xu M, Hu J, Yan J, Yan H, Zhang C. Paravertebral block versus thoracic epidural analgesia for postthoracotomy pain relief: A meta-analysis of randomized trials. *Thorac Cardiovasc* Surg 2022; 70:413-421.
- Hu Z, Liu D, Wang ZZ, et al. The efficacy of thoracic paravertebral block for thoracoscopic surgery: A metaanalysis of randomized controlled trials. *Medicine (Baltimore)* 2018; 97:e13771.
- De Cassai A, Boscolo A, Zarantonello F, et al. Serratus anterior plane block for video-assisted thoracoscopic surgery: A meta-analysis of randomised controlled trials. Eur J Anaesthesiol 2021; 38:106-114.
- 20. Zhang X, Zhang C, Zhou X, et al. Analgesic effectiveness of perioperative ultrasound-guided serratus anterior plane block combined with general anesthesia in patients undergoing

video-assisted thoracoscopic surgery: A systematic review and meta-analysis. *Pain Med* 2020; 21:2412-2422.

- Liu X, Song T, Xu HY, et al. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails. *Medicine* (*Baltimore*) 2020; 99:e20286.
- 22. Huang W, Wang W, Xie W, Chen Z, Liu Y. Erector spinae plane block for postoperative analgesia in breast and thoracic surgery: A systematic review and meta-analysis. J Clin Anesth 2020; 66:109900.
- Koo CH, Lee HT, Na HS, Ryu JH, Shin HJ. Efficacy of erector spinae plane block for analgesia in thoracic surgery: A systematic review and meta-Analysis. J Cardiothorac Vasc Anesth 2022; 36:1387-1395.
- 24. Cai Q, Liu GQ, Huang LS, et al. Effects of erector spinae plane block on postoperative pain and side-effects in adult patients underwent surgery: A systematic review and meta-analysis of randomized controlled trials. *Int J Surg* 2020; 80:107-116.
- 25. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA Extension Statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann Intern Med 2015; 162:777-784.
- 26. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011; 343:d5928.
- Nikolakopoulou A, Higgins JPT, Papakonstantinou T, et al. CINeMA: An approach for assessing confidence in the results of a network meta-analysis. *PLoS Med* 2020; 17:e1003082.
- Wang Q, Wang YH, Lai HH, et al. Rating the certainty of evidence from network meta-analysis: an introduction to CINeMA. [Article in Chinese] Chin J Evidence Based Med 2020; 20:1111-1116.
- 29. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. *Stat Methods Med Res* 2018; 27:1785-1805.
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14:135.
- 31. Baytar MS, Yılmaz C, Karasu D, Baytar Ç. Comparison of ultrasonography

guided serratus anterior plane block and thoracic paravertebral block in video-assisted thoracoscopic surgery: A prospective randomized double-blind study. *Korean] Pain* 2021; 34:234-240.

- Huang QW, Li JB, Huang Y, Zhang WQ, Lu ZW. Comparison of analgesia after a thoracoscopic lung cancer operation with a sustained epidural block and a sustained paravertebral block: A randomized controlled study. Adv Ther 2020; 37:4000-4014.
- 33. Vilvanathan S, Kuppuswamy B, Sahajanandan R. A randomized control trial to compare thoracic epidural with intercostal block plus intravenous morphine infusion for postoperative analgesia in patients undergoing elective thoracotomy. Ann Card Anaesth 2020; 23:127-133.
- Viti A, Bertoglio P, Zamperini M, et al. Serratus plane block for video-assisted thoracoscopic surgery major lung resection: A randomized controlled trial. Interact Cardiovasc Thorac Surg 2020; 30:366-372.
- 35. Finnerty DT, McMahon A, McNamara JR, Hartigan SD, Griffin M, Buggy DJ. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: A randomised clinical trial. Br J Anaesth 2020; 125:802-810.
- 36. Wei W, Zheng X, Gu Y, Tang C, Yao Y. Effects of different postoperative analgesic strategies on postoperative neurocognitive function and quality of recovery in elderly patients undergoing one lung ventilation. [Article in Chinese] Nan Fang Yi Ke Da Xue Xue Bao 2020; 40:1821-1825.
- 37. Chen N, Qiao Q, Chen R, Xu Q, Zhang Y, Tian Y. The effect of ultrasoundguided intercostal nerve block, singleinjection erector spinae plane block and multiple-injection paravertebral block on postoperative analgesia in thoracoscopic surgery: A randomized, double-blinded, clinical trial. J Clin Anesth 2020; 59:106-111.
- Lee J, Lee DH, Kim S. Serratus anterior plane block versus intercostal nerve block for postoperative analgesic effect after video-assisted thoracoscopic lobectomy: A randomized prospective study. *Medicine (Baltimore)* 2020; 99:e22102.
- 39. Gaballah KM, Soltan WA, Bahgat NM. Ultrasound-guided serratus plane block versus erector spinae block for postoperative analgesia after video-assisted thoracoscopy:

A pilot randomized controlled trial. J Cardiothorac Vasc Anesth 2019; 33:1946-1953.

- 40. Kim DH, Oh YJ, Lee JG, Ha D, Chang YJ, Kwak HJ. Efficacy of ultrasound-guided serratus plane block on postoperative quality of recovery and analgesia after video-assisted thoracic surgery: A randomized, triple-blind, placebocontrolled study. *Anesth Analg* 2018; 126:1353-1361.
- Park MH, Kim JA, Ahn HJ, Yang MK, Son HJ, Seong BG. A randomised trial of serratus anterior plane block for analgesia after thoracoscopic surgery. *Anaesthesia* 2018; 73:1260-1264.
- Ökmen K, Ökmen BM. Evaluation of the effect of serratus anterior plane block for pain treatment after videoassisted thoracoscopic surgery. Anaesth Crit Care Pain Med 2018; 37:349-353.
- 43. Wu C, Ma W, Cen Q, Cai Q, Wang J, Cao Y. A comparison of the incidence of supraventricular arrhythmias between thoracic paravertebral and intercostal nerve blocks in patients undergoing thoracoscopic surgery: A randomised trial. Eur J Anaesthesiol 2018; 35:792-798.
- 44. Saad FS, El Baradie SY, Abdel Aliem MAW, Ali MM, Kotb TAM. Ultrasoundguided serratus anterior plane block versus thoracic paravertebral block for perioperative analgesia in thoracotomy. Saudi J Anaesth 2018; 12:565-570.
- 45. Kadomatsu Y, Mori S, Ueno H, Uchiyama M, Wakai K. Comparison of the analgesic effects of modified continuous intercostal block and paravertebral block under surgeon's direct vision after video-assisted thoracic surgery: A randomized clinical trial. Gen Thorac Cardiovasc Surg 2018; 66:425-431.
- 46. Hutchins J, Sanchez J, Andrade R, Podgaetz E, Wang Q, Sikka R. Ultrasound-guided paravertebral catheter versus intercostal blocks for postoperative pain control in videoassisted thoracoscopic surgery: A prospective randomized trial. J Cardiothorac Vasc Anesth 2017;31:458-463.
- Khalil AE, Abdallah NM, Bashandy GM, Kaddah TA. Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain. J Cardiothorac Vasc Anesth 2017;31:152-158.
- 48. Zhang B, Liu DY. Application of thoracic paravertebral nerve block in video-assisted thoracosopic surgery: A randomized controlled trial. [Article in Chinese] Nan Fang Yi Ke Da Xue Xue Bao

2016; 37:460-464.

- 49. Okajima H, Tanaka O, Ushio M, et al. Ultrasound-guided continuous thoracic paravertebral block provides comparable analgesia and fewer episodes of hypotension than continuous epidural block after lung surgery. J Anesth 2015; 29:373-378.
- 50. Chen J, Zhang Y, Huang C, Chen K, Fan M, Fan Z. Effects of thoracic paravertebral block on postoperative analgesia and serum level of tumor marker in lung cancer patients undergoing videoassisted thoracoscopic surgery. [Article in Chinese] Zhongguo Fei Ai Za Zhi 2015; 18:104-109.
- Zhang X, Shu L, Lin C, et al. Comparison between intraoperative two-space injection thoracic paravertebral block and wound infiltration as a component of multimodal analgesia for postoperative pain management after video-assisted thoracoscopic lobectomy: A randomized controlled trial. J Cardiothorac Vasc Anesth. 2015;29:1550-1556.
- 52. Kobayashi R, Mori S, Wakai K, et al. Paravertebral block via the surgical field versus epidural block for patients undergoing thoracotomy: A randomized clinical trial. Surg Today 2013; 43:963-969.
- Fortier S, Hanna HA, Bernard A, Girard C. Comparison between systemic analgesia, continuous wound catheter analgesia and continuous thoracic paravertebral block: A randomised, controlled trial of postthoracotomy pain management. Eur J Anaesthesiol 2012; 29:524-530.
- 54. Hotta K, Endo T, Taira K, et al. Comparison of the analgesic effects of continuous extrapleural block and continuous epidural block after video-assisted thoracoscopic surgery. J Cardiothorac Vasc Anesth 2011; 25:1009-1013.
- 55. Pintaric TS, Potocnik I, Hadzic A, Stupnik T, Pintaric M, Novak Jankovic V. Comparison of continuous thoracic epidural with paravertebral block on perioperative analgesia and hemodynamic stability in patients having open lung surgery. *Reg Anesth Pain Med* 2011; 36:256-260.
- 56. Messina M, Boroli F, Landoni G, et al. A comparison of epidural vs. paravertebral blockade in thoracic surgery. *Minerva Anestesiol* 2009; 75:616-621.
- 57. D'Andrilli A, Ibrahim M, Ciccone AM, et al. Intrapleural intercostal nerve block associated with mini-thoracotomy

improves pain control after major lung resection. Eur J Cardiothorac Surg 2006; 29:790-794.

- 58. Kaya FN, Turker G, Basagan-Mogol E, Goren S, Bayram S, Gebitekin C. Preoperative multiple-injection thoracic paravertebral blocks reduce postoperative pain and analgesic requirements after video-assisted thoracic surgery. J Cardiothorac Vasc Anesth 2006; 20:639-643.
- Vogt A, Stieger DS, Theurillat C, Curatolo M. Single-injection thoracic paravertebral block for postoperative pain treatment after thoracoscopic surgery. Br J Anaesth 2005; 95:816-821.
- Debreceni G, Molnár Z, Szélig L, Molnár TF. Continuous epidural or intercostal analgesia following thoracotomy: A prospective randomized double-blind clinical trial. Acta Anaesthesiol Scand 2003; 47:1091-1095.
- Bolotin G, Lazarovici H, Uretzky G, Zlotnick AY, Tamir A, Saute M. The efficacy of intraoperative internal intercostal nerve block during video-assisted thoracic surgery on postoperative pain. Ann Thorac Surg 2000; 70:1872-1875.
- Perttunen K, Nilsson E, Heinonen J, Hirvisalo EL, Salo JA, Kalso E. Extradural, paravertebral and intercostal nerve blocks for post-thoracotomy pain. Br J Anaesth 1995; 75:541-547.
- 63. Jo Y, Park S, Oh C, et al. Regional analgesia techniques for video-assisted thoracic surgery: A frequentist network meta-analysis. *Korean J Anesthesiol* 2022; 75:231-244.
- Ladak SS, Katznelson R, Muscat M, Sawhney M, Beattie WS, O'Leary G. Incidence of urinary retention in patients with thoracic patient-controlled epidural analgesia (TPCEA) undergoing thoracotomy. *Pain Manag Nurs* 2009; 10:94-98.
- Kokar S, Ertaş A, Mercan Ö, Yıldırım FG, Taştan ÖA, Akgün K. The lumbar erector spinae plane block: A cadaveric study. Turk J Med Sci 2022; 52:229-236.
- 66. Baldinelli F, Capozzoli G, Pedrazzoli R, Feil B, Pipitone M, Zaraca F. Are thoracic wall blocks efficient after video-assisted thoracoscopy surgery-lobectomy pain? A comparison between serratus anterior plane block and intercostal nerve block. J Cardiothorac Vasc Anesth 2021; 35:2297-2302.
- Rao Z, Zhou H, Pan X, et al. Ropivacaine wound infiltration: A fast-track approach in patients undergoing thoracotomy surgery. J Surg Res 2017; 220:379-384.

- 68. Balzani E, Rosboch GL, Ceraolo E, et al. The effect of peripheral regional analgesia in thoracic surgery: A systematic review and a meta-analysis of randomized-controlled trials. *Tumori* 2023; 109:6-18.
- 69. Huan S, Deng Y, Wang J, Ji Y, Yin G. Efficacy and safety of paravertebral block versus intercostal nerve block in thoracic surgery and breast surgery: A systematic review and meta-analysis. *PLoS One* 2020; 15:e0237363.
- 70. Desai N, Kirkham KR, Albrecht E. Local anaesthetic adjuncts for peripheral regional anaesthesia: A narrative review. Anaesthesia 2021; 76 Suppl 1:100-109.
- 71. Zhang P, Liu S, Zhu J, Rao Z, Liu C. Dexamethasone and dexmedetomidine as adjuvants to local anesthetic mixture in intercostal nerve block for thoracoscopic pneumonectomy: A prospective randomized study. *Reg Anesth Pain Med* 2019; 44:917-922.
- 72. Gao Z, Xiao Y, Wang Q, Li Y. Comparison of dexmedetomidine and dexamethasone as adjuvant for ropivacaine in ultrasound-guided erector spinae plane block for videoassisted thoracoscopic lobectomy surgery: A randomized, double-blind, placebo-controlled trial. Ann Transl Med 2019; 7:668.
- 73. Taketa Y, Irisawa Y, Fujitani T. Programmed intermittent bolus infusion versus continuous infusion of 0.2% levobupivacaine after ultrasoundguided thoracic paravertebral block for video-assisted thoracoscopic surgery: A randomised controlled trial. Eur J Anaesthesiol 2019; 36:272-278.
- 74. Chen L, Wu Y, Cai Y, et al. Comparison of programmed intermittent bolus infusion and continuous infusion for postoperative patient-controlled analgesia with thoracic paravertebral block catheter: A randomized, doubleblind, controlled trial. *Reg Anesth Pain Med* 2019; 44:240-245.

Supplementary Material 1. Search Strategy

#	Searches	Results
1	((thoracotomy) OR (thoracic surgery)) OR (Video-Assisted Thoracic Surgery)	543723
2	((((((thoracic epidural analgesia) OR (thoracic paravertebral block)) OR (serratus plane block)) OR (erector spinae plane block)) OR (wound infiltration)) OR (intercostal block)) OR (extrapleural block)	19765
3	1 and 2	3615
4	3 Filters: Clinical Trial	1083

						Din	ect co	mpar	1sons	In the	e netv	vork					
	AvsC	AvsF	AvsG	Avel	BvsC	BvsD	BvsE	BvsH	CvsF	CvsH	GVSH	Gval	GvsJ	GvsK	Hvsl	HvsJ	IvsJ
Mixed estimates	1000	-							-								
AVSC AVSF	50.2	51.1	1	1			- 12	- 3	24.9		1	- 21	1	1	121		
AveG	5.6	2.9	810	29.		0.1	0:1	418	217	316	415	30.7	1:1	0.2	2.6	0.9	
Avsi	704	307	1011	35.	225	1	12	516	3.6	407	0.3	10,3	0.1	0:2	1018	0.1	-
BVEC BVED	0.9	0.4	0.3	0.2	0.	98		13	0.5	0:1	0:1	0.1	÷.	4	1.0		- Q
BVSE				.8	0.1		99.7	1.	1			2	1.1	2	1	1.1	
OVER	25.5	25.6	40	1012	22.9	-1	0.1	2.9	48.7	2:1	2.3	2.0	0:4	0:1	1012	0.5	- 2
CV6H	17.5	3.6	516	20.4	3:5	0:1	0:1	3.2	8.7	2/7	2.6	25	0.5	0:1	73 0	0.7	8
GVEH Gvel	0.2	0.1	0.3	0.4	0.1	11	- 2	0:1	0:1	0:1	10.3	74.8	2.3	1	42.1	2.3	0.1
GVSJ	0.1	0.1	0.1		0.1			0:1	ù. 4.	ū.,	417	19.4	32.		87	23.5	0.7
GVSK	0.6	0:4	0:3	1.0	0.6	0:3	0:3	0.2	0.2	0:1	0:3	1.7	0.1	93.4	-	0:1	1
HVSJ	0:1	9:1	0.1	0.3	0.2			0:1	0.1	0:2	58	21.4	28.9		22.1	23.1	0.6
IvsJ	0.1		0.1	0.2	0:1	3.	- K.	1	. ÷.		1.1	25.0	27.2	-25	22.7	21.7	0.7
Indirect estimates					-	_							752				
AvsB	28.2	14.0	0:1	0:4	17 1 20 5	20.0		0.6	140	0:1	0:1	- 21	10	10	0.5	- 5	3
AV6D AV6E	19.7	918	0:1	0.3	29.5	49.9	29.9	0.4	918				. A.	÷.	0.3	ŝ	2
AvsH	507	2/9	707	27.7	37	0:1	0.1	413	216	3/6	3/9	314	0:7	0.2	31.2	0.9	
AV5J AV5K	413	2.2	516	19.5	310	0.2	0:1	2.9	2.0	2.5	3/1	21.0	0.7	30.4	1.7	0.7	0,4
BVEF	142	148	0:1	0:4	41.7		1	0.6	27.5	0.1	0:1	1		-	0.5		
BVEG BVEI	189	518	4/6	18.5	28.5	0.1	0.1	218	80	2:1	21/	17.9	0:/	0.1	1.8	0.5	1
7 BvsJ	1117	518	3/6	13,6	19.3	0:1	0:1	2:4	516	1.8	0:4	716	120	0:1	507	9.6	0.3
BVSK CVSD	1101	514	316	12 8		48.7	0:1	2.3	516	1.6	2:1	1圓1	0.5	20.4	1.4	0.4	2
E CVSE	0.5	0.2	0.1	0.5	48.1		48.8	0:7	0.2	0.1	0:1	10	Ψ.	18	0.5		10
CV6G	177	3/7	5.8	20.5	3.4	0.1	0.1	3/1	3.6	2.6	3/3	22.4	0.8	0.1	1.9	0.7	
CvsJ	14.2	710	416	16.5	2:6	0:1	0:1	2.5	70	2.1	0.5	911	184	0.1	7/2	1814	0:3
CVSK	134	616	494	155	218	10.7		2.4	6/7	2:0	2:5	15.8	0.6	24.3	1.3	0.5	
DVSE	1000	1014	0.1	0.4	29.3	29.7	49.9	0.4	1914	1	- 23		÷.		0.3	- 22	- 21
DvsG	1110	5/4	316	128	18.2	20.6	0:1	2:3	515	1.6	2:1	143	0.5	0:1	1.4	0:4	8
DV6H	124	584	3/6	128	20.4	20.6	0.1	2.5	50	1.6	1.8	1:6	0:3	0.1	180	0.4	1
DvsJ	916	407	3/1	1811	15.8	17.9	0:1	2.0	416	1:4	0.3	613	9.9	0.1	407	7/9	0.2
DvsK EvsF	912	46	3:0	1016	152	173	297	1.9	46	1:4	1.7	1817	0:4	17.0	1:1	0:4	
EvsG	150	514	3.6	128	18.2	0:1	20.6	2.3	515	1.6	2:1	143	0.5	0:1	1.4	0.4	*
Evel	1110	504	3/6	12,8	18.2	0.1	20.7	2.3	515	1.7	1.8	1.6	0.3	0.1	145	0.4	1
EvsJ	9.6	407	3/1	181	15.8	0.1	18.0	2.0	418	1.4	0.3	613	9.9	0.1	407	7/8	0.2
EVEK	912	45	3.0	10.6	15.2	0:1	17.3	1.9	416	1:4	1.7	117	0.4	15.9	1.1	0.4	
FvsH	6/1	19.1	514	19.6	313	0.1	0.1	311	1211	2.6	2/7	2.4	0.5	0:1	22.1	0.7	- 2
Fval	704	23.0	6.5	23.7	3/9	0:1	0:1	3/6	144	3:0	0.2	6.7		0:1	7.0	0.1	
FV6J FV6K	5/0	15.5	4/5	15.0	217	0.1	0:1	2.5	918	2.1	0.5	38	140	23.5	619	1111	0.3
HVSK	0.1	0.1	0.1	0.4	0.2	0.1	0:1	0:1	1	0.1	616	10 0	1.4		27.3	1.5	5
IVSK	0:3	0:2	0:1	0:7	0:3	0:1	0:1	0:1	0:1	0:1	4/8	39.5	10	35.6	512	1:1	0.5
Entire network	1010	7/2	3/2	11113	142	6.0	6/1	1.9	7/1	1.5	1.7	1010	3.6	5.9	7.2	2.9	0.1
Included studies	1	1	3	3	2	1	1	1	1	1	2	2	1	1	1	1	1

Supplementary Material 2. Contribution matrix

The contribution matrix provides measures for quantifying the direct evidence proportion. Nodes contributing most to the evidence are marked in the bigger grey square.

Cumulative opioids consumption within 24 hours Treatment groups are: A - Control; B - cTEA; C - cTPVB; D - cEPB; E - cSAPB; F - cWI; G - TPVB; H - ICB; I - SAPB; J - ESPB; K - WI.

Mixed estimates AvsF	AvsF	AvsG	AvsH	BvsC	BvsE	BvsG	CvsD	CvsG	FvsH	GvsH	Hvsl
Mixed estimates AvsF	24.0										
AvsF	24.0										
Aur C	04.0		20.8		1	÷.,	1.3	1:3	28.2	8.8	12
AVSG	3:6	62.3	15 1	1	1.1		2:8	2:8	3:6	12.9	17
AvsH	12/3	15.4	41.8		i i i	12	2:7	2:7	123	12.7	17
BvsC		- S		100.		and the second	10	*	5	51	
BvsE		2	- C		3.99		1 - C	- S	1	2	1
BVSG		-	-	- S.		100.0		444			12
CVSD	319	182	1203				23.0	27.0	3/10	1014	- S
CVSG	3.2	1913	100				42.9	30.0	41.0	8/0	1
PVSH	40.0	22.4	25.0		-	- ŝ.	1:2	1:2	41.8	10.6	-ć-
Gysh	104	32.4	20.0	- 3 -	19	- 2	412	412	104	81	100.0
			_							_	100.0
Indirect estimates											
AvsB	3:4	31.3	11,5	23.1	12		10,5	12.5	3/4	4:3	- 52
AvsC	2.0	35.0	88	21.9	<u>. 54.</u>	21.9	1:6	1:6	2:0	7//8	- 14
AvsE	2:3	21.4	719	15.8	31.8	1.1	7/2	3.6	2:3	2:0	14
AvsD	2:3	21.4	7/0	15.8	31.6	(A)	7/12	3.6	2:3	2/9	inited.
Avsl	703	9.11	24.7	4		1000	1:8	1:8	703	715	41.0
BvsF	15.6	21.0	518	10		31.0	1:8	1.8	15.3	3.2	-
BvsH	417	20.7	18.0	+		35.9	217	207	407	12.5	
BvsD	417	20.7	16.0	1	28	35.9	297	2%7	417	12.5	1000
Bvsl	3/2	13.9	10/7	15.2	100	1	8/1	701	3/2	8.4	30.4
CvsE	1:2	511	410	÷.	42.7	21.4	812	13.1	1:2	3/1	12
CVSF	1/0	100	0:5		-0 *	5	17.2	21.7	41.9	407	
CvsH	2.5	18.2	1800	1912		1912	2.0	2.0	2.5	0.0	28.4
Ever	1915	148	2.1	1911	28.1	1954	86	86	1316	50	20.4
EveG	1.2	60	40	21.4	42.7		310	1311	1.2	311	
EvsH	30	130	10/7	150	30.4		811	7/1	30	8.4	
EvsD	3/2	130	10/7	152	30.4		8/1	7/1	3/2	8.4	
Evsl	2:4	1018	8.2	1116	23.3	1	812	514	2:4	814	23.3
FvsG	227	30.4	717	1	- 100007		2:6	2:6	22.2	11.9	- 1000
FvsD	3:12	13.9	1017	15.2	30.4		8:1	701	312	8.4	1
Fvsl	15.0	410	110	*			0:7	0:7	25.1	3:3	40 1
GvsD	15.0	4.0	1110		12	27	0:7	0:7	25.1	3/3	40.1
Gvsl	417	20.7	16.0		1.	20	2!!7	2%7	417	12.5	35.9
HvsD	417	20.7	16.0	4	+		2#7	2#7	417	1215	35.9
Dvsl	417	20.7	18.0	+	-+		207	217	417	12.5	35.9
Entire network	818	16.5	181	810	1115	816	610	816	718	707	11115
neluded studies	5	2	4	3	1	3	1	1	1	1	1

			1	Direct co	mpariso	ns in the	e networ	k	
		AvsD	AvsE	AvsF	BvsC	BvsE	DvsF	EvsF	FvsG
Mix	ed estimates								
	AvsD	35.7	910	17.3	8	2	27.2	910	360
	AvsE	1:3	44.7	25.7	5	2	1.3	27.0	130
	AvsF	2:3	25.5	44.5		1.1	2:3	25.4	540
	BvsC				100.0		1.0	8	:000
	BvsE			- 20		99.9	. •	4	(B)
	DvsF	31.0	1113	19.7	- 64		26.8	11.3	
	EvsF	1:0	21.1	20.1		54	1.0	56.8	
	FvsG	+	1	383			40	1	100.0
Indir	ect estimates							1	
	AvsB	0:8	26.0	15.0	÷	41.7	0:8	15.7	10
	AvsC	0.5	18.4	1018	29.5	29.4	0.5	1801	100
	AvsG	1:3	14.8	25.8	1		1:3	14.8	41.9
	BvsD	17.8	1511	2%	÷.	32.4	146	17.3	-
	BvsF	0:6	1109	183		43.8	0.6	31.9	. 180
	BvsG	0.4	812	7/19	÷.	30.4	0:4	22.2	30.5
	CvsD	1315	11114	2.0	24.5	24.5	1110	1311	141
	CvsE				50.0	50.0			2.02
	CvsF	0.4	818	719	30.4	30.4	0:4	22.2	
	CvsG	0.3	8.6	810	23.3	23.3	0:3	17.0	23.3
	DvsE	28.4	22.4	410	10	1.4	21.6	25.6	
	DvsG	19.6	7/1	1215	- 12	25	17.0	701	36.6
	EvsG	0.6	1109	1113	9	Ğ	0:6	31.9	43.8
ntire netv	vork	718	1218	1 0 18	1215	20.8	ðir1	17.4	1215
ncluded st	tudies	2	1	4	1	2	2	1	1

Supplementary Material 2 cont. *Contribution matrix Postoperative VAS at 12 hour* Treatment groups are:A - Control; B - cTEA; C - cSAPB; D - TPVB; E - ICB; F - SAPB; G - ESPB.

					Direct	t compa	risons i	n the ne	twork			
		AveF	AveG	AveH	BvsC	Bv6E	BvsG	CV6D	CV6G	FVSH	GvsH	Hvsi
	Mixed estimates		Ľ.									
	AvsF	74.8	5:4	415	÷			14	411	9.9	504	
	Av8G	1.8	39.9	27.3	- 45	1.58	- R	0:1	0:1	1.5	29.0	8.C
	AvsH	1.9	34.1	28.0		1.2		0:1	0:1	1,9	33.9	
	BvaC		*		100.0		1.		212		1.0	85
	5V6E	1	1	100		100.0			0.50		17	5.1
	BysG		*		1		100.0	in the second		-		2
	CVED	0:1	1.3	1:2				43.3	27.7	0.1	26.4	+
	CVEG	0:1	1.7	1/6		24	- 42 -	37.1	24.1	Q:1	35.4	. R
	FvsH	35.7	20.2	15.5	10		*	0:1	0:1	613		
	GV8H	0.3	4/3	410				0:4	0:4	0:3	90.3	
	Hvsl				*			7	121			100.0
	Indirect estimates		_	-	-							
919	AvsB	1:3	26.1	18,9	23.2	108		1411	900	1:3	6/1	÷3
E	AveC	1:1	23.6	15.2	20.4	-	20.4	0:1	0:1	1:1	1201	-
88	AvsE	0:9	17.9	12.9	15,8	31.7		917	612	0.9	4/1	1
ē	AvsD	0.9	17.9	12.9	15,8	31.7	- 75	9.7	612	0.9	4/1	1000
la la	Avsi	1:1	20.8	1711			-	0:1	0.1	1:1	20.7	39.0
	BVSF	25.6	15.4	1013			70.0	0:1	0:1	413	14.5	
net.	BysH	0:1	2.2	2:1	35	5.8	48.7	0:2	0:2	0.1	48.3	1.1
ž	BvsD	0:1	2.2	2:1			48.7	0.2	0.2	0.1	46.3	and the second
8	5val	0:1	1.2	1:1	18.3	10000	-	11113	701	0.1	24.2	36.7
82	CVEE	2015	0.6	0:6	- X	43.1	21.6	1311	8.5		1205	3
	CVSF	29.0	16,5	12,5	- 2			20.6	133	419	3/2	÷.
	CVEH	0:1	1:3	1.2	-	-+		43.3	27.7	0.1	26.4	1000
	CVSI	0.1	1:5	1:4	1614	-	16,4	0:1	0:1	0:1	31.1	32.8
	EVSF	21.3	1213	8.8	1213	24.7		705	4/8	3/6	416	
	EV8G		0:6	0:6	21.6	43.1	t.)	1801	815		1215	÷.
	EVSH	0.1	1.2	1.1	18,3	30.7	- 3	1113	708	0:1	24.5	
	EVED	0.1	1.2	1.1	10,0	30.7	- ÷	1813	/01	0.1	44.0	-
	EVSI	0.1	0.0	0.8	1204	20.0		OIZ .	512	0.1	140	20.0
	PV8G	30.5	21.9	18.0	-	100		0:1	0:1	011	20.6	
	Evel	0.1	112	1:1	10.0	30.7		185	0.1	0/1	180	100
	EVEL Charle	20,1	1821	1810	- ÷	1		0.1	0.1	414	180	20.1
	Girci	4917	2.2	2.4	- S-			0.1	0.1	0.4	16.7	48.7
	GV6I Husto	0.1	2.2	2.1	- ÷			0.2	0.2	0.1	40.0	48.7
	Duct	0.1	2.2	2.4				0.2	0.2	0.1	46.3	48.7
	Liver.		2.2	2:1				0.2	0.2	10.1	40.5	40.7
Entin	e network	8/7	9.8	704	8.6	12(3	618	712	4/6	1.7	20,7	12 3
Inclu	ded studies	5	1	4	4	1	3	1	2	2	1	1

Supplementary Material 2 cont. *Contribution matrix Postoperative VAS at 24 hour* Treatment groups are:A - Control; B - cTEA; C - cTPVB; D - cICB; E - cSAPB; F - TPVB; G - ICB; H - SAPB; I - ESPB.

A comparison-adjusted funnel plot is used to assess publication bias. In the funnel plot, the horizontal axis represents the direct summary effect, the vertical axis represents a measure of dispersion, different color represents every comparison. If small-study affect the symmetry around the zero line of the funnel plot, the result suggests publication bias. None of the netfunnel plots below suggested any publication bias.

A comparison-adjusted funnel plot is used to assess publication bias. In the funnel plot, the horizontal axis represents the direct summary effect, the vertical axis represents a measure of dispersion, different color represents every comparison. If small-study affect the symmetry around the zero line of the funnel plot, the result suggests publication bias. None of the netfunnel plots below suggested any publication bias.

Supplementary Material 5 cont. Summary of global test of consistency

Outcome	Chi square value	P-value of Consistency model	Interpretation
Cumulative opiate consumption within 24 Hours	Chi2(7) = 6.86	<i>P</i> = 0.4431	Global consistency satisfied
Postoperative VAS at 6 Hour	Chi2(3) = 2.62	<i>P</i> = 0.4533	Global consistency satisfied
Postoperative VAS at 12 Hour	Chi2(2) = 1.82	<i>P</i> = 0.4018	Global consistency satisfied
Postoperative VAS at 24 Hour	Chi2(3) = 1.83	<i>P</i> = 0.6077	Global consistency satisfied

The global test of consistency judges whether heterogeneity is independent of the comparison being made. If statistically significant (p-value < 0.1), this implies global consistency not satisfied, and reasons for this were sought further (using node-splitting and loop-specific inconsistency).

Supplementary Material 6. Exploration of inconsistency

Node-splitting reports the estimated direct and indirect effects of two treatments in studies (the direct estimate) and in other studies (the indirect estimate) and their difference; the p-value for the difference is a test of consistency.

The loop-specific approach can evaluate inconsistency separately in every closed loop of every outcome, but the power is low. If the lower limit of 95% CI does not reach the zero line, the loop are probably considered to present statistically significant inconsistency.

Postoperative VAS at 6 hour

Treatment groups are:A - Control; B - cTEA; C - cTPVB; D - cICB; E - cSAPB; F - TPVB; G - ICB; H - SAPB; I - ESPB.

Node-s	splitting						
Side –	Diı	rect	Ind	irect	Diffe	D.	
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	r-z
A F	-1.901781	0.3248217	-1.617013	0.7617379	-0.2847684	0.8255951	0.73
A G	-1.046024	0.4197194	-1.75356	0.7967801	0.7075361	0.9004291	0.432
ΑH	-1.73489	0.378743	-1.511407	0.5640067	-0.2234824	0.6781954	0.742
BC	0.2226528	0.4916482	1.907308	1.032066	-1.684655	1.143195	0.141
B E *	1.1	1.100507	3.634586	177.0866	-2.534586	177.0862	0.989
B G	0.9072518	0.4670674	-0.7779307	1.042956	1.685182	1.142761	0.14
CD*	0.7	0.8404275	2.587862	145.7318	-1.887862	145.7344	0.99
CG	-1.000006	0.9204607	0.6837792	0.6780467	-1.683785	1.14324	0.141
FΗ	-3.33E-09	0.6798	0.2845102	0.4685534	-0.2845102	0.8256333	0.73
GH	-6.63E-10	0.7251437	-0.7109006	0.5348347	0.7109006	0.9010447	0.43
HI*	-0.15	0.5369518	3.322522	11.43759	-3.472522	11.44983	0.762

* Warning: all the evidence about these contrasts comes from the trials which directly compare them.

Supplementary Material 6 cont. Postoperative VAS at 12 hour
Treatment groups are:A - Control; B - cTEA; C - cSAPB; D - TPVB; E - ICB; F - SAPB; G - ESPI

Node-s	Node-splitting										
Side –	Direct		Indi	irect	Diffe	D					
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	r-z				
AD	-1.007661	0.6676278	-2.525701	0.731133	1.518039	0.9906085	0.125				
AE	-1.2	1.009139	-0.8969719	1.10887	-0.3030283	1.499318	0.84				
AF	-1.217672	0.4989476	-0.2694483	0.777475	-0.9482234	0.9230622	0.304				
BC*	-0.4	0.9690586	3.40143	75.93821	-3.80143	75.94565	0.96				
BE*	0.6329096	0.7119298	-1.507846	32.23463	2.140755	32.24246	0.947				
DF	1.295886	0.6016602	-0.2233818	0.7960041	1.519268	0.9906239	0.125				
EF	-1.29E-12	0.9983576	0.295148	1.11912	-0.295148	1.499715	0.844				
FG*	-0.4000001	0.8910055	1.884822	29.46141	-2.284822	29.47485	0.938				

* Warning: all the evidence about these contrasts comes from the trials which directly compare them.

Supplementary Material 6 cont. Postoperative VAS at 24 hour
Treatment groups are: A - Control; B - cTEA; C - cTPVB; D - cICB; E - cSAPB; F - TPVB; G - ICB; H - SAPB; I - ESPI

Node-s	plitting						
e• 1	Di	rect	Indirect		Difference		DN
Side	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P>z
A F	-0.9845771	0.2170626	-1.499671	0.4676597	0.5150936	0.5218949	0.324
A G	-1.1	0.4037	-1.070743	0.4455244	-0.029257	0.6012202	0.961
ΑH	-1.250503	0.2904816	-0.8648466	0.3503139	-0.3856561	0.4463964	0.388
ВC	-0.2371399	0.299026	0.4280224	0.6262882	-0.6651623	0.6938852	0.338
B E *	-0.24	0.4010471	2.633896	50.60463	-2.873896	50.60622	0.955
ВG	0.3562116	0.3138668	-0.310491	0.6190864	0.6667025	0.6935454	0.336
CD*	0.9099998	0.7602428	2.897436	152.2892	-1.987436	152.2902	0.99
CG	-0.0718642	0.5423286	0.5925159	0.4329603	-0.6643801	0.6938713	0.338
FΗ	0.28753	0.3968004	-0.2277805	0.3324292	0.5153105	0.5219519	0.324
GΗ	-3.66E-09	0.366321	0.0217989	0.4763752	-0.0217989	0.6009363	0.971
HI*	-1.3	0.5987543	2.189586	123.2751	-3.489586	123.2773	0.977

* Warning: all the evidence about these contrasts comes from the trials which directly compare them.

Supplementary Material 6 cont. Summary of inconsistency testing

	Global consistency	Node-splitting	Loop-specific	Network forest plots
Cumulative opioids consumption within 24 hours	Consistent	1 out of 17 nodes inconsistent (TPVB vs SAPB)	3 out of 9 loops inconsistent (Control- TPVB-SAPB, TPVB-ICB-SAPB)	Support consistency model
Postoperative VAS at 6 hour	Consistent	No nodal inconsistency	No loop inconsistent	Support consistency model
Postoperative VAS at 12 hour	Consistent	No nodal inconsistency	1 out of 2 loops inconsistent (Control-TPVB-SAPB)	Support consistency model
Postoperative VAS at 24 hour	Consistent	No nodal inconsistency	No loop inconsistent	Support consistency model

Overall, all outcomes are associated with global consistency, and minor nodal or loop inconsistency.

			Cumu	lative opio	ids consun	nption wit	hin 24 hour	s		
C 1	6.63	-4.73	-8.07	-6.80	-12.97	-3.51	-19.06	-21.16	-13.03	-19.76
Control	(-5.99,19.25)	(-10.94,1.48)	(+12.58,+3.56)	(-11.84,-1.77)	(-17.21,-8.74)	(-7.88,0.86)	(-27.29,-10.82)	(-30.21,-12.10)	(+17.24,-8.83)	(-25.53,-13.99
		-11.36	-14.70	-13.44	-19.60	-10.14	-25.69	-27.79	-19.66	-26.39
		(-24.25,1.52)	(-27.08,-2.32)	(-25.83,-1.04)	(-31.49,-7.71)	(-23.45,3.16)	(-40.62,-10.76)	(-43.18,-12.39)	(-32.86,-6.46)	(-40.12,-12.67
			-3.34	-2.07	-8.24	1.22	-14.33	-16.43	-8.30	-15.03
		ESPB	(-9.02,2.34)	(-7.15,3.00)	(-13.21,-3.28)	(-6.25,8.68)	(-24.36,-4.29)	(-27.14,-5.71)	(-15.54,-1.06)	(-23.16,-6.90)
				1.27	-4.90	4.56	-10.99	-13.09	-4.96	-11.69
			SAPB	(-2.60,5.13)	(-8.35,-1.46)	(-1.63,10.74)	(-20.17,-1.80)	(-23.01,-3.16)	(-10.93,1.01)	(-18.75,-4.63)
					-6.17	3.29	-12.25	-14.35	-6.23	-12.96
				ICB	(-9.68,-2.66)	(-3.19,9.78)	(-21.52,-2.98)	(-24.35,-4.35)	(-12.41,-0.04)	(-20.13,-5.79)
						9.46	-6.08	-8.18	-0.06	-6.79
					TPVB	(3.49,15.43)	(-15.11,2.95)	(-17.96,1.60)	(-5.79,5.68)	(-13.64,0.07)
							-15.54	-17.64	-9.52	-16.25
						cWI (-2:	(-23.93,-7.16)	(-26.83,-8.46)	(-13.89,-5.15)	(-22.22,-10.28
							-CADD	-2.10	6.02	-0.71
							CSAPB	(-11.23,7.03)	(-1.20,13.24)	(-6.59,5.18)
									8.12	1.39
								CEPB	(-0.02,16.26)	(-5.59,8.37)
									TRVD	-6.73
									CITVB	(-10.92,-2.54
										cTEA

Supplementary Material 8. *Netleague tables of mixed estimates* The diagonal cells include all of the competing treatments in each outcome, and green box indicates statistically significant results (95% CI does not cross null value of 0 VAS) while red boxes indicate statistically insignificant result (95% CI does cross null value of 0 VAS).

	Postoperative VAS at 6 hour										
Control	-1.81	-1.66	-1.20	-1.85	-0.72	-0.58	-1.28	-1.82			
	(-3.02,-0.60)	(-2.25,-1.07)	(-1.90,-0.49)	(-2.41,-1.29)	(-3.15,1.71)	(-2.68,1.52)	(-2.58,0.02)	(-2.93,-0.71)			
	ECDD	0.15	0.61	-0.04	1.09	1.23	0.53	-0.01			
	ESPB	(-0.90,1.20)	(-0.72,1.95)	(-1.32,1.24)	(-1.59,3.77)	(-1.16,3.62)	(-1.20,2.26)	(-1.59,1.58)			
		CADD	0.46	-0.19	0.94	1.08	0.38	-0.16			
		SAPB	(-0.35,1.28)	(-0.91,0.53)	(-1.52,3.41)	(-1.06,3.22)	(-0.99,1.75)	(-1.34,1.03)			
			ICD	-0.65	0.48	0.62	-0.08	-0.62			
			ю	(-1.53,0.23)	(-1.84,2.80)	(-1.37,2.60)	(-1.18,1.01)	(-1.48,0.24)			
				TRVP	1.13	1.27	0.57	0.03			
				IFVB	(-1.35,3.62)	(-0.90,3.44)	(-0.84,1.98)	(-1.20,1.26)			
					-CADD	0.14	-0.56	-1.10			
					CSAPB	(-2.72,3.00)	(-2.90,1.77)	(-3.26,1.06)			
						ICP	-0.70	-1.24			
						CICB	(-2.35,0.95)	(-3.11,0.64)			
							TOVD	-0.54			
							CIPVB	(-1.43,0.35)			
								cTEA			

Postoperative VAS at 12 hour										
Control	-1.34	-0.94	-1.07	-1.70	-2.10	-1.70				
Control	(-3.28,0.59)	(-1.78,-0.11)	(-2.41,0.27)	(-2.77,-0.62)	(-4.81,0.61)	(-3.64,0.23)				
	ECDD	0.40	0.27	-0.35	-0.76	-0.36				
	ESPB	(-1.35,2.15)	(-1.93,2.48)	(-2.39,1.68)	(-3.99,2.47)	(-2.97,2.25)				
		CADD	-0.13	-0.75	-1.16	-0.76				
		SAPB	(-1.47,1.21)	(-1.80,0.30)	(-3.87,1.55)	(-2.70,1.18)				
			ICD	-0.63	-1.03	-0.63				
		ІСВ		(-2.23,0.98)	(-3.39,1.33)	(-2.03,0.76)				
				TRUD	-0.41	-0.01				
				TPVB	(-3.26,2.45)	(-2.13,2.12)				
					C A DD	0.40				
					CSAPB	(-1.50,2.30)				
						cTEA				

Supplementary Material 8 cont. *Netleague tables of mixed estimates* The diagonal cells include all of the competing treatments in each outcome, and green box indicates statistically significant results (95% CI does not cross null value of 0 VAS) while red boxes indicate statistically insignificant result (95% CI does cross null value of 0 VAS).

	Postoperative VAS at 24 hour											
Gentral	-2.40	-1.10	-1.10	-1.08	-1.56	-0.52	-1.43	-1.32				
Control	(-3.64,-1.15)	(-1.51,-0.68)	(-1.62,-0.58)	(-1.44,-0.72)	(-2.66,-0.46)	(-2.24,1.19)	(-2.28,-0.58)	(-2.08,-0.55)				
	ESPB	1.30	1.30	1.32	0.84	1.87	0.96	1.08				
		(0.13,2.47)	(0.02,2.57)	(0.05,2.58)	(-0.76,2.43)	(-0.20,3.94)	(-0.47,2.40)	(-0.31,2.46)				
		CADD	-0.00	0.02	-0.46	0.57	-0.34	-0.22				
		SAPB	(-0.50,0.50)	(-0.45,0.48)	(-1.54,0.62)	(-1.13,2.28)	(-1.17,0.49)	(-0.96,0.52)				
			ICB	0.02	-0.46	0.58	-0.33	-0.22				
			ICB	(-0.58,0.61)	(-1.42,0.50)	(-1.06,2.21)	(-1.00,0.33)	(-0.77,0.33)				
				70370	-0.48	0.56	-0.35	-0.24				
				IFVB	(-1.61,0.65)	(-1.18,2.30)	(-1.25,0.54)	(-1.05,0.57)				
						1.04	0.13	0.24				
					CSAPB	(-0.73,2.80)	(-0.82,1.07)	(-0.55,1.03)				
						JCB	-0.91	-0.80				
						сісв	(-2.40,0.58)	(-2.38,0.78)				
							TRUP	0.11				
							CIPVB	(-0.41,0.64)				
								cTEA				

Supplementary Material 8 cont. *Netleague tables of mixed estimates* The diagonal cells include all of the competing treatments in each outcome, and green box indicates statistically significant results (95% CI does not cross null value of 0 VAS) while red boxes indicate statistically insignificant result (95% CI does cross null value of 0 VAS).

Supplementary Material 9. Network Geometry

Network geometry maps were used to represent all available direct comparisons between treatments for each outcome visually; nodes of the network map corresponded to analgesic treatments; line thickness within the network map corresponded to the number of direct comparisons available for that outcome.

Supplementary Material 10 cont. SUCRA rankings

Surface under the cumulative ranking curve (SUCRA) produces rankograms and cumulative ranking plots for all treatments of each outcome. The results yields a probability (percentage) of an intervention being among the best options and a mean rank.