
Background: Melatonin, one of the most versatile hormones in the body, is well appreciated in 
managing circadian rhythm and for antioxidant properties. Produced in the pineal gland and within 
mitochondria, melatonin influences many physiologic processes through receptor mediated and 
direct effects. 

Objective: The present investigation explores the evolving pharmacologic properties of melatonin, 
as well as current therapeutic uses in areas where mitigating oxidative stress, inflammation, and 
cellular senescence. This review also delves into novel therapeutic potential of melatonin and how 
current research is revealing a wide array of therapeutic promise in pain medicine. 

Study Design: A systematic review of randomized controlled trials (RCTs) and observational 
studies was performed using various search engines focused on melatonin and its role in pain 
medicine.

Methods: The available literature on melatonin and pain medicine was reviewed. A comprehensive 
literature search of multiple databases from 1966 to July 2024, including manual searches of the 
bibliography of known review articles was performed. Quality assessment of the included studies 
and best evidence synthesis were incorporated into qualitative and quantitative evidence synthesis.

Outcome Measures: The primary outcome measure was the proportion of patients receiving 
melatonin with significant relief and functional improvement of greater than 50% of at least 3 
months. Duration of relief was categorized as short-term (less than 6 months) and long-term 
(greater than 6 months).

Results: Melatonin can affect intervertebral disc (IVD) health through the enhancement of survival 
and function of nucleus pulposus cells, primarily through activation of the ERK1/2 signaling pathway. 
Melatonin also influences the biochemical environment of the IVD by modulating inflammation and 
oxidative stress, crucial factors in the pathogenesis of disc degeneration. Melatonin has been shown 
to reduce senescence and promote autophagy within disc cells, vital for clearing out damaged 
cellular components, preserving cellular function and preventing deterioration associated with 
aging and degenerative diseases. 

Limitations: Despite the availability of multiple studies, the paucity of clinical pain related 
literature is considered as the major drawback. 

Conclusion: Based on the present systematic review, melatonin plays a critical role in sleep, but 
evolving studies have demonstrated substantive roles in mitigating degenerative conditions in 
various tissues, including IVD degeneration. Ongoing studies will better clarify the role of melatonin 
as a potential therapeutic agent, including the targeted delivery to various body regions.
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MMelatonin (5-methoxy-N-acetyltryptamine), 
an indoleamine hormone, is pivotal in 
maintaining homeostasis of organisms 

both in the plant and animal kingdoms (1). Well-
known for regulating human circadian rhythm, 
melatonin is secreted by the pineal gland directly into 
both the cerebrospinal fluid (CSF) and its rich vascular 
system, serving as an endocrine hormone (2). While 
the pineal gland is the primary source of melatonin 
in humans, several other tissues also produce smaller 
amounts. These include the retina, gastrointestinal 
tract, and immune system cells. Melatonin production 
in these extrapineal sites does not follow a circadian 
rhythm. All together, the hormone plays essential 
anti-inflammatory and antioxidant roles through 
scavenging radicals, and modulating the immune 
system and antioxidant enzyme production. 

Melatonin is known to neutralize various reactive 
oxygen and nitrogen species, such as hydroxyl radicals, 
hydrogen peroxide, singlet oxygen, nitric oxide, and 
peroxynitrite anions. The indole moiety of melato-
nin serves as the primary site for its interaction with 
oxidants, due to its high resonance stability and low 
activation energy barrier in reactions with free radicals. 
Additionally, the methoxy and amide side chains of 
melatonin play a crucial role in its antioxidant proper-
ties. Specifically, the N-C=O structure in the C3 amide 
side chain is vital, as the carbonyl group is essential for 
scavenging a second reactive species, and the nitrogen 
is necessary for forming a new 5-membered ring fol-
lowing interaction with a reactive species (3).

Recently, it has been shown that melatonin is also 
synthesized within the mitochondria of most cells, 
where it acts as a local antioxidant and may engage 
in autocrine signaling (4). Melatonin operates through 
various mechanisms, including the activation of G-
protein coupled melatonin receptors, modulation of 
intracellular secondary messenger cascades, or through 
direct binding effects (5). Some neuroprotective prop-
erties of melatonin do not require the binding of mela-
tonin to a membrane receptor and are the result of 
other properties of the molecule (6). Ongoing research 
continues to reveal additional mechanisms influenced 
by melatonin, such as its agonistic effects on aryl hy-
drocarbon receptors, its role as a transcription factor 
integral to cellular homeostasis, and modulating the 
adaptive response to environmental stressors (7). 

Melatonin plays pivotal roles in multiple body tis-
sues, notably the intervertebral disc (IVD). The nucleus 
pulposus, primarily responsible for shock absorption, 

exhibits rhythmic fluctuations in fluid content. Its night-
time rigidity restoration, crucial for function, is partly 
mediated by the circadian regulation of melatonin (8). 
In conditions such as degenerative disc disease, where 
this rhythmic process is disrupted, the extracellular 
matrix fails to properly support restoration, leading to 
a pro-inflammatory state (8). Melatonin, known for its 
extensive anti-inflammatory and antioxidant proper-
ties, mitigates cellular aging by promoting autophagy 
and regulating cellular proliferation (9). This enhances 
the extracellular matrix of the nucleus pulposus, 
thereby restoring its shock-absorbing capabilities. In 
the annulus fibrosus, melatonin reduces the accumu-
lation of reactive oxygen species (ROS) and regulates 
autophagy, diminishing cellular senescence and aiding 
in the recovery of the extracellular matrix (10). While 
current literature offers promising insights into mela-
tonin’s potential, empirical data on human subjects 
remain limited (11).

Dietary habits and gut microbiota, often over-
looked, are linked to both neurodegenerative diseases 
and IVD disease (12-15). The Mediterranean diet, rich 
in plant-based foods (e.g., leafy green vegetables, 
legumes, fruits), dairy, and fish, has shown benefits 
in mitigating the early development, symptoms, and 
severity of these conditions (14). Notably, this diet is 
abundant in tryptophan, which the gut microbiota 
converts into indoleamines, 3-indolepropionic acid, 
and precursors to melatonin (16). The role of dietary 
tryptophan in health is complex and not fully under-
stood, but the benefits of the Mediterranean diet 
might be partially attributed to the production of these 
compounds. Furthermore, the decline of tryptophan-
converting bacteria, related to factors like aging or 
antibiotic use, may lead to reduced levels of circulating 
indoleamines, adversely affecting antioxidant status. 
Elucidating the significance of dietary tryptophan, its 
potential benefits in combating neurodegeneration, 
and its importance in maintaining IVD health is critical.

Given the broadening understanding of melato-
nin’s benefits and its potential impact on overall health, 
a comprehensive review of recent advancements is 
necessary, along with a discussion on possible future 
directions in research and application.

Pharmacokinetics

Oral bioavailability, the most common means of 
administrating melatonin, is variable. Peak concentra-
tions ranging from 2.5% to 56% of the administered 
dose, largely related to high first-pass metabolism 
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(17-19). Despite typical dosages being only a few mil-
ligrams, oral administration can result in supraphysio-
logic peak concentrations of melatonin, 10 to 100 times 
higher than normal peak levels. After oral administra-
tion, peak concentrations of single-dose melatonin are 
reached within 40-50 minutes, and it has an elimination 
half-life of about 50 minutes (18). Melatonin is primarily 
metabolized in the liver by cytochrome P450 enzymes 
with a small amount excreted in the urine (18). While 
there is a high degree of first-pass metabolism, a num-
ber of metabolites of melatonin also have antioxidant 
properties (20).

While oral administration is the most common 
method for delivering melatonin in humans, alterna-
tive methods are being explored to enhance bioavail-
ability and target specific applications. Intravenous and 
sublingual administration of melatonin are particu-
larly useful in bypassing first-pass metabolism (21,22). 
Another innovative approach under investigation is 
the use of intradiscal injections, which provide high 
concentration and localized application with minimal 
systemic side effects (23). This method aligns with 
broader research into medications and biologics such as 
glucocorticoids, mesenchymal stem cells, and platelet-
rich plasma, known for their anti-inflammatory and 
restorative properties in the nucleus pulposus (23). 
While melatonin injections into human IVDs have not 
yet been performed, animal studies reveal significant 
potential. For example, in rat models, intradiscal mela-
tonin has shown effects in reducing cell senescence in 
nucleus pulposus cells, restoring extracellular matrix 
contents, and restoring the circadian rhythm (24-26). 
Given these positive outcomes and lack of toxicity, 
melatonin emerges as a leading candidate for trans-
lational research focused on localized delivery within 
the nucleus pulposus, annulus fibrosus, or cartilaginous 
end plate.

Pharmacodynamics

Aside from its global antioxidant properties, mela-
tonin interacts primarily with MT1 and MT2 receptors, 
both of which are often bound to Gαi G-protein cou-
pled receptors and have variable affinity for melatonin. 
Melatonin binds with similar affinities to MT1 receptors 
with a dissociation constant (pKD) of approximately 
10.64 ± 0.11 and to MT2 receptors with a pKD of 10.11 
± 0.05 (27). However, receptor modulation can vary 
depending on physiological factors such as melatonin 
concentration or receptor state (28). Additionally, 
melatonin and its metabolites have clinically significant 

agonistic properties on the aryl hydrocarbon receptor, 
but the physiological and disease implications of this 
interaction remain under investigation (7). Melato-
nin’s influence on tissue is multifactorial and depends 
on the location. It operates mainly through MT1 and 
MT2, both coupled to Gαi, which vary in location de-
pendent availability (29). With its combined secondary 
messenger influence and direct antioxidant properties, 
melatonin has shown a wide range of pharmacological 
activity across the body. 

Pharmacodynamics and 
Neurodegenerative Disease

Melatonin concentration in CSF is significantly high-
er than in plasma, and these levels diminish with aging. 
This decline correlates with progression of age-related 
neurodegenerative disorders, notably Alzheimer’s dis-
ease, Huntington’s disease, and Parkinson’s disease (30). 
Beyond disruptions to the circadian rhythm observed 
in these conditions, the reduction in melatonin may 
accelerate disease progression related to loss of neu-
roprotective functions (2). The protective mechanisms 
of melatonin are multifaceted, involving inhibition of 
toxic protein synthesis, antioxidant capabilities, and 
enhancement of both blood and glymphatic circulation. 
Specifically, melatonin directly inhibits production and 
aggregation of amyloid-beta (Aβ) in  Alzheimer’s disease 
(2,31,32). Furthermore, excessive vascular endothelial 
growth factor (VEGF) production, which is associated 
with impaired blood flow and abnormal neovasculariza-
tion linked to cognitive decline in Alzheimer’s disease, is 
mitigated by melatonin, thereby reducing neuropatho-
logical changes (33-35). In models of accelerated aging 
in Huntington’s disease, melatonin reverses increased 
leakage of damaged mitochondrial DNA and resulting 
pro-inflammatory states (30). In Parkinson’s disease, 
patients benefit from melatonin supplementation (36), 
and experimental models in rats have demonstrated 
significant improvements, likely related to the ability 
of melatonin to prevent mitochondrial dysfunction and 
promote antioxidant activities (37). Overall, melatonin is 
thought to prevent accumulation of toxic metabolites, 
enhancing glymphatic clearance.

Pharmacodynamics in IVD Disease
Melatonin pharmacodynamic influence on IVD 

health includes enhancement of survival and function 
of nucleus pulposus cells, primarily through activation 
of the ERK1/2 signaling pathway. This pathway plays a 
crucial role in cell survival, aiding the repair and regen-
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eration processes within the disc. Furthermore, mela-
tonin influences the biochemical environment of the 
IVD by modulating inflammation and oxidative stress, 
crucial factors in the pathogenesis of disc degenera-
tion. The regulation of these pathways helps maintain 
the structural integrity of the disc and mitigates the 
progression of degenerative changes that often lead to 
lower back pain.

In addition to its cellular protective mechanisms, 
melatonin has shown potential in reducing senescence 
and promoting autophagy within disc cells. These 
actions are vital for clearing out damaged cellular 
components, thereby preserving cellular function and 
preventing the deterioration associated with aging and 
degenerative diseases. Melatonin antioxidant proper-
ties further protect disc cells from oxidative stress, a 
common contributor to cellular damage and inflamma-
tion within the IVD. Notably, studies have highlighted 
melatonin’s ability to suppress angiogenesis via the 
inhibition of VEGF, supporting the avascular nature 
of the nucleus pulposus and preventing pathological 
angiogenesis that can exacerbate disc degeneration. 
Collectively, these effects underscore the potential of 
melatonin as a therapeutic agent for IVD degeneration, 
pointing towards its utility in clinical settings to man-
age and potentially to reverse degenerative changes 
in the spine, particularly in aging populations where 
melatonin levels naturally decline (9). 

Melatonin has demonstrated several protective 
actions within IVD cells, contributing to the reduction 
of senescence and promotion of autophagy (38). These 
actions are crucial for the removal of damaged cellular 
components, thereby maintaining cellular function and 
preventing age-related degeneration (39). Melatonin’s 
antioxidant properties further protect IVD cells from 
oxidative stress, which is a significant factor in cellular 
damage and inflammation within the discs (40,41).

In addition, melatonin has been shown to inhibit 
VEGF, thereby suppressing angiogenesis. This action 
supports the avascular nature of the nucleus pulposus, 
preventing pathological angiogenesis that could wors-
en disc degeneration (42). Collectively, these effects 
highlight the potential of melatonin as a therapeutic 
agent for managing IVD degeneration, particularly in 
aging populations where melatonin levels naturally 
decline, offering a promising avenue for clinical ap-
plications (43). 

aging dePletion negative effects

Melatonin, an endogenous hormone primarily 

synthesized by the pineal gland, supplemented by the 
mitochondria, and other tissues, exhibits a decline in 
production as organisms age. This age-related reduc-
tion in melatonin levels holds significant implications 
related to its multifaceted roles and interactions. 
Among its primary functions are the regulation of 
circadian rhythms and antioxidative processes (44). 
Research indicates a substantial decline in endogenous 
melatonin secretion by the pineal gland in humans 
aged 80-89 compared to those aged 10-19, with the 
reduction being approximately 10-fold. The strong cor-
relation between decreased melatonin production and 
aging, coupled with evidence suggesting aging as a 
consequence of melatonin deficiency, underscores the 
utility of assessing both pineal and mitochondrial en-
dogenous melatonin production as a means to gauge 
the rate of aging in organisms (45-47).

The documented decline in melatonin produc-
tion has been extensively associated with heightened 
inflammation and apoptosis at the cellular level, at-
tributed to melatonin interactions with mitochondria 
(48). Within mitochondria, melatonin plays a pivotal 
role in regulating mitochondrial membrane perme-
ability pores, thus modulating oxygen utilization and 
membrane potential. These regulated pores are also 
instrumental in controlling the release of thioreti-
naco ozonide, a complex crucial for binding phosphate 
groups in adenosine triphosphate and oxygen during 
mitochondrial oxidative phosphorylation. Additionally, 
thioretinaco ozonide acts as a methyl donor to adeno-
syl methionine, a vital precursor in melatonin synthe-
sis from N-acetyl serotonin. Melatonin can increase 
complex I and complex IV activity in the mitochondrial 
electron transport chain, without exerting significant 
changes in the activity of complex II to III (49).

As organisms age, there is a concomitant decline in 
both the production and release of thioretinaco ozon-
ide, leading to decreased serum availability and subse-
quent reduction in melatonin synthesis. This diminished 
melatonin production precipitates dysregulation of mi-
tochondrial membrane permeability pores, resulting in 
increased oxidative stress, generation of free radicals, 
impaired electron transport, heightened nitric oxide 
production, apoptosis, and consequent inflammation, 
all of which contribute to the aging process (50). 

At the cerebral level, the decline in plasma melato-
nin levels plays a direct role in the aging process through 
a range of interactions. On a nightly basis, the elevation 
of plasma melatonin levels facilitates synchronization 
between the hypothalamic suprachiasmatic nuclei and 
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peripheral cellular receptors, ensuring a harmonized 
circadian rhythm (51). Maintaining circadian rhythmicity 
is of particular interest in aging research, as the decline 
in melatonin associated with aging often leads to a dys-
regulated circadian pattern, which in turn accelerates 
aging through various pathophysiological mechanisms. 
One such mechanism involves melatonin mediated 
protective function in clearing waste products from the 
central nervous system, thereby playing a crucial role in 
preventing age-related neurodegeneration (52,53). 

Neurodegeneration constitutes a hallmark of ag-
ing, driven by a combination of physiological stresses 
such as cell death, mitochondrial dysfunction, and 
oxidative stress, as well as specific mechanisms un-
derlying neurodegenerative diseases like Alzheimer’s, 
Parkinson’s, and Huntington’s disease, among others. 
A pivotal process implicated in both physiological and 
disease-related neurodegeneration is autophagy, an 
endogenous metabolic mechanism responsible for 
clearing misfolded proteins and dysfunctional cellular 
organelles. In the absence of effective autophagy, 
these aberrant proteins accumulate and form deposits 
within the organism, precipitating neurodegeneration. 
Conversely, excessive autophagic activity can lead to 
premature cellular demise. Melatonin emerges as a 
crucial regulator of autophagy, as evidenced by its neu-
roprotective effects in Alzheimer’s disease. Melatonin 
acts as a scavenger of free radicals within the central 
nervous system, reducing the production of amyloid 
plaques and promoting their clearance via enhanced 
autophagy, mediated by the regulation of ROS and 
inflammation. Reduced plasma melatonin levels have 
been associated with dysregulated ROS production, 
resulting in mitochondrial DNA, protein, and lipid dam-
age, which in turn triggers increased autophagy. Given 
the mitochondria’s involvement in autophagosome for-
mation, melatonin’s homeostatic actions in stabilizing 
mitochondrial function hold significant implications for 
both autophagy and apoptosis (54). Research indicates 
that exogenous melatonin supplementation can al-
leviate symptoms associated with Alzheimer’s disease 
by restoring mitochondrial and autophagic homeo-
stasis, thereby ameliorating tau protein aggregation 
and impaired autophagy, which are key pathological 
mechanisms of the disease (45,46,55,56). Therefore, 
ongoing interest persists regarding the physiological 
and pathological implications stemming from the age-
related decline in melatonin production, as well as the 
diverse array of interactions this hormone engages in, 
both centrally and peripherally (57). 

theraPeutic role of melatonin

The therapeutic implications of melatonin are 
extensive and growing, with new applications being 
discovered in recent years. The primary physiologic 
role of melatonin is well documented as conveying in-
formation regarding the daily light and darkness cycle 
to other bodily structures (58). The most common uses 
of exogenous melatonin are for idiosyncrasies in the 
natural sleep-wake cycle, whether due to inborn cir-
cadian rhythm disorders, long travel, or looking for 
overall improved sleep (59). Aside from its most com-
mon use, melatonin also displays pleiotropic effects 
related to its ease of crossing cellular membranes, 
multiple interactions with nuclear receptors, intracel-
lular protein modulation, and general antioxidant 
effects (60,61). 

The role of melatonin in antioxidant therapy is 
known to be 3-fold. Melatonin works as a potent free 
radical scavenger, more potent than vitamin E, and also 
increases the levels of several antioxidative enzymes 
while inhibiting the pro-oxidative enzymes (62,63). 
Another general therapeutic implication for melatonin 
is in disease processes that are mediated by ferroptosis. 
Multiple organ systems have been recognized as sus-
ceptible to ferroptosis related damage and attenuating 
this response is beneficial in reducing disease develop-
ment or progression (64). Melatonin has demonstrated 
a mitigating effect in ferroptosis through its actions 
as an iron chelator and metabolism mediator which 
allows for therapeutic approaches across a range of 
non-cancerous ferroptosis mediated diseases of the 
eyes, brain, heart, kidneys, lung, liver, and bone (64,65). 
With its role as an antioxidant and ferroptosis mitiga-
tor, melatonin is a great candidate for neuroprotection 
and modifying existing neurodegeneration (66). Recent 
animal stroke models have shown melatonin therapy 
during reperfusion to reduce ischemic areas while also 
decreasing the inflammatory response, blood-brain 
barrier permeability, and cerebral edema formation 
(67-70). 

In a similar animal model study looking rather at 
cardiotoxicity reversal, melatonin played a large role in 
reducing cardiac myocyte apoptosis. Cyclosporine A in-
duced heart damage using cyclosporine A through the 
damaging pathways of lipid peroxidation and apopto-
sis was reversed in those who received 21-day melato-
nin therapy following the insult (71). In another animal 
study looking this time at melatonin therapy following 
traumatic physical injury, they found that melatonin 
working as a potent antioxidant induced less burden of 
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inflammatory markers, as well as hastening the return 
to normal physiology (72). 

Melatonin has also recently shown to have anti-
cancer properties through oncostatic and proapop-
totic mechanisms which are key pathways in tumor 
progression and survival rate (73,74). These properties 
stemmed further investigation, which found that using 
adjunct melatonin therapy alongside chemotherapy 
has improved outcomes and fewer side effects in breast 
cancer (75-77). 

Overall, melatonin mediated properties allow 
for a wide range of therapeutic implications related 
to its invaluable role as a potent antioxidant, sleep 
aid, and adjunct therapy for damaged tissue. In this 
regard, ongoing research is demonstrating additional 
novel approaches in how new routes of administration, 
through nano carriers, are showing additional promise 
in enhancing benefits of melatonin therapy (78). 

melatonin novel uses for the future

A search for melatonin in clinical trials.gov resulted 
in more than 500 clinical research studies involving mela-
tonin in the past 3 decades. Of these, 124 studies are in 
various stages of recruitment and 110 have been com-
pleted. While some of these are diagnostic, most trials 
involve treatment with melatonin for several disorders, 
including periodontitis, skin diseases (such as actinic 
keratosis), acute ischemic stroke and reperfusion-related 
injury, acute myocardial infarction, neurodegenera-
tive disorders (such as Alzheimer’s disease, Parkinson’s 
disease, multiple sclerosis, Huntington’s disease, and 
amyotrophic lateral sclerosis), traumatic brain injury, 
spinal cord injuries, anxiety prior to and during surgery, 
depressive disorders, epilepsy, general and febrile sei-
zures, autism, bipolar disorder, delirium, bone-related 
disorders (such as osteoarthritis, osteopenia, osteopo-
rosis), infections (such as dengue fever and COVID-19), 
cancer, diabetes, chronic kidney disease, reproductive 
disorders (such as female infertility), and chronic low 
back pain. Since melatonin treatment has been tested 
in combination with other drugs, and given the fact that 
melatonin is present in all animals when a new drug is 
tested, it appears that drug interactions may not be a 
cause for concern with the usage of exogenous mela-
tonin. Importantly, the LD50 for melatonin has not yet 
been established although there were attempts, indicat-
ing that high levels of melatonin, at least more than 
100 mg, are well-tolerated (79-82). Successful outcomes 
from at least some of these studies will hopefully lead to 
its therapeutic use in many of these disorders.

One area of study that needs to be explored fur-
ther (and is not currently listed among impending clini-
cal trials) is to determine if melatonin alleviates IVD de-
generation that happens with aging (9,83). There have 
been many reports using cells from human nucleus 
pulposus (5,6), and human annulus fibrosus cells that 
demonstrate beneficial effects of melatonin (84). Simi-
larly, subcutaneous or intraperitoneal injections in in 
vivo rat models as well as direct injections into the L3/4 
IVD in the New Zealand white rabbit have also shown 
to be beneficial in the healing process (85-91). Thus far, 
however, no direct clinical studies have been conducted 
in human patients. There have been a few studies that 
have evaluated the use of melatonin in relieving post-
operative pain. Specifically, Baradari and colleagues 
found that patients given 5 mg of melatonin an hour 
before surgery experienced significantly less pain in-
tensity after lumbar laminectomy and discectomy (92).

It must be noted that the study design, formula-
tion, time and frequency of administration which 
considers melatonin mediated chronobiotic effects and 
dosage is critical for ensuring success of these studies. 
These parameters, however, are not consistent in the 
above listed clinical research studies, which could be 
major limitations when interpreting the data obtained.  
Dosages in different studies range from 0.4 mg of mel-
atonin to 20 mg of melatonin, with most studies using 
less than 10 mg. Recently it has been suggested that, in 
studies involving osteopenia/osteoporosis, doses in the 
range of 1-1.5 mg of melatonin per kg of body weight 
per day is equivalent to the dosage observed to have 
beneficial effects in animal studies (80). Therefore, 
negative results using very low doses of melatonin 
may need to be repeated using a range of different 
concentrations of melatonin that may, perhaps, include 
the optimal dose. 

Formulations used also differed in the mentioned 
studies, with most researchers using tablets and a few 
using melatonin in the form of a solution (liquid), as a 
gel, and as a lotion. While most studies used melatonin 
or its proprietary forms, such as Circadin® or Meloset®, 
others used melatonin agonists that target its recep-
tors (Ramelteon®). Oral (sublingual) route was most 
common, but in some studies melatonin was injected 
intravenously. In a few dental studies, melatonin was 
mixed with hyaluronic acid and implanted into the 
socket after tooth extraction. Interestingly, Wu and 
colleagues used a novel method to deliver melatonin 
in rats (90). They prepared a sodium alginate hydrogel 
that was incorporated with mesoporous bioactive glass 
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particles as nanocarriers of melatonin. Sodium alginate 
hydrogels purportedly resemble nucleus pulposus tissue 
in terms of their viscoelasticity and hydration capacity 
and facilitate slow and sustained release of drugs; the 
bioactive glass component not only increases mechani-
cal strength of the hydrogel, required for withstanding 
the compression and load-bearing demands of the disc, 
but also promotes regeneration of bone and cartilage 
by inducing osteoblast activity, inhibiting osteoclast 
activity and chondrocyte differentiation (93,94). Their 
results showed that injection of melatonin embed-
ded in these hydrogels was far superior than injecting 
melatonin or the hydrogel by themselves (90). Their 
experiments highlight the importance of the mode of 
delivery of exogenous melatonin in the treatment of 
IVD degenerative disease.

Given the multiple cellular roles of melatonin as a 
scavenger of ROS, as an antioxidant, as an anti-inflam-
matory agent, as a modulator of autophagy, apoptosis, 
and many more, and given the recent findings that it 
is synthesized in the mitochondria, it is expected that 
melatonin would play a therapeutic role in several 
diseases, especially those associated with aging when 
melatonin levels decline (75). 

Limitations
While the potential therapeutic effects of melato-

nin are well demonstrated in the present investigation, 
our study is limited by the available published data 
and relative infancy of research into novel therapeutic 
uses. Future studies are warranted as current animal 
models show promise of how melatonin’s attenuation 
of cellular stress is significantly useful in both acute and 
chronic disease states. 

conclusion

Melatonin has emerged as a uniquely multifaceted 
hormone with significant current and possible future 
therapeutic implications across numerous health condi-
tions. Ongoing research continues to unravel melatonin 
mediated mechanisms, as well as clinical applications 
through novel delivery systems. Overall, melatonin 
has shown significant promise in aiding many areas of 
medicine, including neurodegenerative processes, in 
reducing the inflammatory response with many future 
applications on the horizon. 
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