
Background: Chronic spinal pain is the most prevalent chronic disease, with chronic persistent spinal 
pain lasting longer than one-year reported in 25% to 60% of the patients. Health care expenditures have 
been escalating and the financial impact on the US economy is growing. Among multiple modalities of 
treatments available, facet joint interventions and epidural interventions are the most common ones, in 
addition to surgical interventions and numerous other conservative modalities of treatments. Despite 
these increasing costs in the diagnosis and management, disability continues to increase. 

Consequently, algorithmic approaches have been described as providing a disciplined approach to the 
use of spinal interventional techniques in managing spinal pain. This approach includes evaluative, 
diagnostic, and therapeutic approaches, which avoids unnecessary care, as well as poorly documented 
practices.  

Recently, techniques involving artificial intelligence and machine learning have been demonstrated to 
contribute to the improved understanding, diagnosis, and management of both acute and chronic 
disease in line with well-designed algorithmic approach. The use of artificial intelligence and machine-
learning techniques for the diagnosis of spinal pain has not been widely investigated or adopted.

Objectives: To evaluate whether it is possible to use artificial intelligence via machine learning 
algorithms to analyze specific data points and to predict the most likely diagnosis related to spinal pain.

Study Design: This was a prospective, observational pilot study.

Setting: A single pain management center in the United States.

Methods: A total of 246 consecutive patients with spinal pain were enrolled. Patients were given an 
iPad to complete a Google form with 85 specific data points, including demographic information, type 
of pain, pain score, pain location, pain duration, and functional status scores. The data were then input 
into a decision tree machine learning software program that attempted to learn which data points were 
most likely to correspond to the practitioner-assigned diagnosis. These outcomes were then compared 
with the practitioner-assigned diagnosis in the chart.

Results: The average age of the included patients was 57.4 years (range, 18-91 years). The majority 
of patients were women and the average pain history was approximately 2 years. The most common 
practitioner-assigned diagnoses included lumbar radiculopathy and lumbar facet disease/spondylosis. 
Comparison of the software-predicted diagnosis based on reported symptoms with practitioner-assigned 
diagnosis revealed that the software was accurate approximately 72% of the time.

Limitations: Additional studies are needed to expand the data set, confirm the predictive ability of the 
data set, and determine whether it is broadly applicable across pain practices.

Conclusions: Software-predicted diagnoses based on the data from patients with spinal pain had an 
accuracy rate of 72%, suggesting promise for augmented decision making using artificial intelligence 
in this setting.
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sacroiliitis, spinal pain
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CChronic spinal pain is the most prevalent chronic 
disease across the globe, negatively impacting 
the quality of life and function and straining 

the health care system as a leading cause of disability-
adjusted life years (1-9). In fact, chronic persistent 
spinal pain lasting longer than 1-year is reported in 
25% to 60% of the patients (10-12). The assessments 
of the impact of spinal pain in the United States (US) 
showed low back pain ranking number one and neck 
pain ranking number 3 (8). Further, Dieleman et al (5,6) 
evaluated the economic impact on health care in the 
United States and showed an estimated spending of 
$134.5 billion in 2016 (an increase of 53.5% from 2013) 
with $87.6 billion spent for managing spinal pain. The 
costs of other musculoskeletal disorders also increased 
by 43.5% from $183.5 billion in 2013 to $263.3 billion 
in 2016. 

Among multiple modalities of treatments available, 
facet joint interventions and epidural interventions are 
the most performed procedures with interventional 
techniques in managing spinal pain, in addition to sur-
gical interventions and multiple conservative modali-
ties of treatments (1-4). Interventional techniques have 
been shown to increase over the years, even though 
they have shown flattening or some decline in recent 
years from 2009 to 2018 (13-21), except for spinal cord 
stimulation utilization and trends in expenditures have 
increased exponentially (22). Consequently, their uti-
lization, indications and medical necessity have been 
continuously discussed with establishment of new 
guidance from public and private payers starting with 
multiple changes related to the Affordable Care Act 
(23-31). These questions have been raised despite over-
whelming evidence in the diagnosis and treatment of 
spinal pain with interventional techniques (1,2,32-42). 
Further, the COVID-19 pandemic has reduced access 
to interventional techniques in conjunction with the 
opioid epidemic, which was under control until 2018 
and has been intensifying since 2019 with exploding 
patterns of opioid deaths in 2020 (1,2,43-47). To pro-
vide optimal care, multiple measures have been devel-
oped to continue interventional pain management to 
chronic pain patients, with optimal utilization of inter-
ventional techniques and conservative management 
(48-51), including avoidance of steroids and assessment 
of  patients with telehealth (51).

Thus, the importance of an algorithmic approach 
has increased. The purpose of an algorithmic approach 
is to provide a disciplined approach to the use of spinal 
interventional techniques in managing spinal pain, 

as described in multiple publications (1,2,52). This ap-
proach includes evaluative, diagnostic, and therapeutic 
approaches, which in turn avoid unnecessary care as 
well as poorly documented practices. Among the vari-
ous components of algorithmic approach, accurate di-
agnosis of underlying causes is prerequisite for success-
ful therapy of spinal pain (1-3,32-37,52). Assessment of 
a patient with spinal pain starts with patient self-report 
questionnaire items and history taking, followed by 
physical examination to help clinicians generate a 
probable hypothesis which may differentiate those 
patients with pain of spinal origin or non-spinal ori-
gin, with or without serious pathology (53). While this 
paradigm has been shown to be valid in other areas of 
medicine (54), in spinal pain, the reliability of history 
and physical examination in detecting sources of spinal 
pain is less certain. Consequently, expensive modalities 
with imaging or diagnostic blockade are performed to 
improve the accurate diagnosis to provide appropriate 
treatment (1,2,32-37,52). 

It is possible that an improved method for objec-
tively diagnosing spinal pain will improve the success of 
clinical decision-making and subsequent interventions. 
Clinicians who manage spinal pain may tend to recom-
mend the therapies, which they themselves deliver 
(eg, interventional pain specialists might recommend 
medications, while spine surgeons might recommend 
surgery) (55-59). Indeed, there is substantial evidence 
from both within the pain field and from other medi-
cal fields that this is the case (55-59). Even for clinicians 
from the same specialties, treatment recommendations 
can vary based on practice location, type, and various 
other factors (60). Together, these findings suggest that 
there is a need for objective measures of spinal pain, 
including improved diagnostic approaches.

Because of the heterogeneity of low back pain 
presentations across patho-anatomical etiologies, diag-
nostic standardization has been a challenge. In a recent 
systematic review of diagnostic accuracy studies, re-
searchers attempted to develop best-evidence, clinical 
diagnostic rules for the most common disorders of the 
lumbar spine (e.g., intervertebral discs, sacroiliac joints, 
etc); however, the researchers reported that clinical di-
agnostic rules could only be recommended for selected 
lumbar spine disorders. Furthermore, the researchers 
emphasized that single clinical tests were generally not 
useful for making diagnostic conclusions, and instead, 
clusters of tests performed with sequential, algorithmic, 
or staged approaches may be used to improve accurate 
clinical diagnosis of specific disorders (61). 
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Techniques involving artificial intelligence and ma-
chine learning have been shown to contribute to the 
improved understanding, diagnosis, and management 
of both acute and chronic diseases (62). Furthermore, 
machine-learning algorithms facilitate pattern recog-
nition and have been shown to lead to the successful 
classification of patients with heart failure and other 
chronic conditions, and there may be more broad ap-
plicability in a heterogeneous medical field such as pain 
(62-66). However, the use of artificial intelligence and 
machine-learning techniques for the diagnosis of spinal 
pain is not currently well understood.

Therefore, a pilot study was developed within 
the principles of established algorithmic approach to 
spinal pain (1,2,52), at a single pain management cen-
ter, to evaluate whether it is possible to use artificial 
intelligence/machine learning to analyze specific data 
points and to predict the most likely diagnosis related 
to spinal pain.

Methods

The pilot study was conducted utilizing Strength-
ening and Reporting of Observational Studies in Epide-
miology (STROBE) guidance (67). In addition, we also 
utilized essential principles of a pilot study (68) with 
feasibility of the study protocol, recruitment of sub-
jects, testing and measurement instru-
ments, and data entry and analysis. In-
stitutional Review Board (IRB) approval 
was not sought as this was part of the 
patient assessment, with consent fol-
lowing the principles of confidentiality 
with Health Insurance Portability and 
Accountability Act (HIPAA). 

Study Design/Setting

To assess the differences in out-
comes for patients provided with pa-
tient navigator services, a pilot study 
was conducted at a pain management 
center, The Ohio Pain Clinic (Centerville, 
Ohio, USA). 

Patients
A total of 246 consecutive patients 

with chronic low back pain were en-
rolled. Baseline data collected included 
patient demographics, type of pain, 
pain score, pain location, pain duration, 
and functional status scores.

Data Collection Procedure
Consecutive patients were given an iPad with 

a Google Form to complete. The form contained 85 
specific data points (Appendix 1). Data points col-
lected included: demographic information (gender, 
age, height, weight), presenting complaints (chief 
complaint, history of present illness, pain location), 
and pain characteristics (radiation, multiple measures 
of quality and severity of pain, aggravating factors, 
associated symptoms). An example of the patient pain 
diagram provided to patients in the Google Form is 
shown in Fig. 1A. Pain radiation locations evaluated 
included: left/right buttock, hip, thigh, shin, calf, and 
foot. Furthermore, pain referral from lumbar interspi-
nal ligaments (lumbar facet pain) was assessed (Fig. 1B) 
along with investigation of a dermatome map evaluat-
ing L3-L5 and S1 (Fig. 1C). 

Variables
Other data points that were evaluated included: 

pain visual analog scale score; muscle quality; gluteus 
minimus trigger point; gluteus medius trigger point; 
multifidi trigger point; quadratus lumborum trigger 
point; piriformis trigger point; iliolumbar ligament; 
sacroiliac ligament pain referral pattern; hip pain; sac-
roiliac pain; radiation of symptoms; modifying factors; 

Fig. 1. Patient pain diagram components included (A) pain location, (B) 
pain referral from lumbar interspinal ligaments, and (C) dermatome map.
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time of day; and associated symptoms. Patients were 
separated into the following practitioner-assigned 
diagnoses: lumbar radiculopathy, lumbar spondylosis 
without myelopathy, post-laminectomy syndrome, 
and sacroiliitis. Various interventions, such as physical 
therapy, injections, or surgery, were also tracked.

Data Sources/Measurement
The entire data set was then inputted into a 

software program that attempted to learn which data 
points were most likely to correspond to the practitio-
ner-assigned diagnosis using a decision-tree machine 
learning algorithm. The system then tried to predict 
which diagnoses belonged to which patients using 
the data set. For example, if someone entered “pain 
in the back that radiates down the leg” on the data 
capture form, it was likely they may have had lum-
bar radiculopathy. In contrast, if they marked “pain 
in the low back with no radiation,” it was likely that 
they did not have radiculopathy. We then compared 
the accuracy of the software-predicted diagnoses 
with the practitioner-assigned diagnoses using simple 
averages. No statistical evaluation of the data was 
performed.

Bias
Potential sources of bias were addressed by ran-

dom selection of patients included without identifica-
tion of source of pain.

Study Size
For a pilot study, a total of 246 consecutive patients 

were selected, which was considered adequate based 
on previous pilot studies which included much smaller 
number of patients.

Results

Patients/Descriptive Data
A total of 246 consecutive patients were enrolled 

in this prospective, single-site, pilot study. The average 
age of the included patients was 57.4 (range, 18-91) 
years. The majority of patients were women and the 
average pain history was approximately 2 years (Table 
1). The most common practitioner-assigned diagnoses 
included lumbar radiculopathy, post-laminectomy syn-
drome, and sacroiliitis.

Outcome Data/Main Results
Comparison of the software-predicted diagnosis 

based on reported symptoms with practitioner-assigned 
diagnosis revealed that the software was accurate ap-
proximately 72% of the time; therefore, the end result 
is a data set that, through machine learning, may allow 
computer algorithms to provide the treating physician 
with guidance to which potential therapeutic option 
would give the greatest likelihood of success based on 
objective and patient-reported data. This may result in 
enhanced decision making by the physician, allowing 
them to choose a therapy that could be more beneficial 
to the patient while eliminating options that may be 
more costly and ineffective.

Discussion

We have developed an initial data set that can be 
used to help predict spinal diagnoses using a machine-
learning algorithm, which may ultimately contribute to 
augmented clinical decision making, in an algorithmic 
approach to management of spinal pain. Using 85 data 
points, software-predicted diagnoses were accurate 
approximately 72% of the time, when compared with 
practitioner-assigned diagnoses. 

In the last decade, artificial intelligence use, par-
ticularly related to machine learning technologies, has 
greatly increased across a variety of health care appli-
cations, including the investigation of issues related to 
the spine and spinal pain (66). Notably, the use of ma-
chine learning has the promise to increase the avoid-
ance of biases in diagnosis and treatment by objectively 
incorporating and interpreting data (69). 

The results of the present study are similar to 
the previously published algorithmic approach (70-
74) of results in managing chronic low back pain. 
Manchikanti, et al (70), evaluated 120 patients with a 
chief complaint of chronic low back pain to evaluate 
relative contributions of various structures in chronic 
low back pain. They showed prevalence of facet joint 
pain of 40% with a false-positive rate of 47%, disco-
genic pain of 26%, and sacroiliac joint pain of 2% of 
the patients with comparative local anesthetic blocks. 
They also showed pain of nerve root origin in 13% of 
the total population. Consequently, the authors were 
able to identify a pain generator in 81% of the popu-
lation. Pang, et al (71),  applied spinal pain mapping 
in the diagnosis of low back pain utilizing diagnostic 
nerve blocks. They showed sacroiliac joint pain in 6%, 
lumbar nerve root in 20%, facet joint in 24%, combined 
lumbar nerve root and facet disease in 24%, internal 
disc disorder in 7%, combined facet and sacroiliac joint 
in 4%, and lumbar sympathetic dystrophy in 2% of the 
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patients. Schwarzer et al (72,73), in a series of manu-
scripts, attributed origins of chronic low back pain to 
intervertebral discs in 39% of patients, to facet joints in 
15% of 40%, and to sacroiliac joints in 30%. DePalma 
et al (74), assessed the source of chronic low back pain 
and identified internal disc disruption, facet joint 
pain, and sacroiliac joint pain in 42%, 31%, and 18%, 
respectively. Traditionally, clinical features in imaging 
or neurophysiologic studies have been claimed not to 
permit the accurate diagnosis of causation of low back 
pain in 85% of patients in the absence of disc hernia-
tion and neurological deficit (70). Overall, studies show 
similar patterns in the cervical spine and more recent 
studies also confirm the prevalence of lumbar facet 
joint pain with controlled diagnostic blocks utilizing a 
philosophical paradigm shift from an acute to a chronic 
pain model in low back pain, showed prevalence and 
false positive rates of 34.1% and 49.8% in the low 
back, and 49.3% prevalence and 25.6% prevalence in 
chronic neck pain (32,33). Thus, the results of this pilot 
study are similar to published results with controlled 
diagnostic blocks. The next step would be to confirm 
these impressions with diagnostic blocks.  

Additional studies are needed to build on current 
approaches using machine learning. Future directions 
could include investigating the ability to categorize 
patients with spinal pain into subgroups using a broad 
range of biopsychosocial factors, including the incorpo-
ration of objective data from patient-owned devices. 
For example, smart phone applications, fitbits, and 
smart watches can provide large amounts of health 
data, including health trends, that may be collected 
and used to assist in the determination diagnosis, prog-
nosis, or management options of chronic pain. Using 
various clinical factors and an artificial intelligence/ma-
chine learning approach within the context of a large 
set of training data may facilitate enhanced reliability, 
validity, predictive ability, and treatment stratification 
for patients with spinal pain (75). This type of approach 
may contribute to improved clinical outcomes and re-
sult in reduced healthcare costs. To date, only one study 
has employed this approach for low back pain using 
a limited set of physical factors. Similar to our study, 
researchers showed that a decision tree algorithm ac-
curately classified low back pain at about a 53% to 71% 
rate; however, the study was not designed to assess 
outcomes and costs (76). 

However, it is important to note that patients 
are more than just clusters of data sets and clinician 
decision-making needs to be preserved and maintained 

for optimal health care delivery. Notably, only clinicians 
are able to understand the psychosocial context of a 
patient, weigh the importance of both objective and 
subjective information, and translate a patient’s medi-
cal history into usable medical terms (77). Therefore, 
artificial intelligence may be used in an advisory capac-
ity, contributing to increased diagnostic accuracy and 
patient safety, but cannot replace the clinician in many 
key clinical tasks, including delivering compassionate 
diagnoses, translating the implications of diagnoses 
for patients, and listening to and addressing patient 
concerns regarding management options (78). In-
stead, one could see an opportunity in the future for 
artificial intelligence–based diagnoses to be combined 
with clinical gestalt and other validated clinical tools 
for treatment decision making to create more objec-
tive—and hopefully more successful—treatment path-
ways for patients with low back pain. For example, the 
consensus-derived Nijmegen Decision Tool for Chronic 
Low Back Pain was developed to help pain specialists 
determine whether consultation with spine surgeons 
or nonsurgical care specialists would be the most ap-
propriate route for patients with spinal pain (79,80). 
Integrating machine learning into these existing clini-
cal decision pathways may help to improve outcomes 
for patients.

Our results should be viewed within the context 
of the limitations of the observational nature of this 
small pilot study. This single-center study had a small 
sample size of approximately 250 patients with only 
85 data points investigated; therefore, the general-
izability of these results to other settings is unclear. 
Furthermore, all data entries were not completed by 

Table 1. Patient demographics.

Characteristics Patients (n = 246)

Age, mean 57.4 years

Gender, woman 59.2%

Initial pain score (out of 10), mean 6.0

Pain history, mean 25.5 months

Practitioner-assigned primary diagnosis

Lumbar radiculopathy (L4 and L5) 37.8%

Post-laminectomy syndrome 10.2%

Sacroiliitis 7.6%

Spondylosis 6.5%

Sacroiliac 5.5%

Cervical radiculopathy 5.1%

Unknown/missing value 5.1%

Other 14.5%
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all patients, which limited the data set. Finally, the 
machine-learning algorithm relied on practitioner-
assigned diagnoses to “learn” and therefore any 
inherent practitioner biases may have been absorbed 
into the machine-learning algorithm. Based on these 
limitations, rigorous statistical testing was not con-
ducted, further limiting our ability to make conclu-
sions regarding the broad and highly diverse popula-
tion of patients with pain. This pilot study provides 
initial information for this investigational algorithm; 
however, our algorithm has not yet been validated, a 
process that will require millions of patients and their 
associated data in order to be predictive in a broad 
health care context. Additional studies are needed to 
expand the data set, confirm the predictive ability of 
the data set, and determine whether it is broadly ap-
plicable across pain types and practices. 

Conclusions

In this single-center pilot study, collection and en-
try of 85 data points from approximately 250 patients 
with spinal pain resulted in the development of a 
machine-learning algorithm that accurately predicted 
patient diagnoses 72% of the time compared with 
practitioner diagnoses. Additional patient data are 
urgently needed to expand the current data set and 
to provide augmented decision-making for clinicians.
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Using a Google Form, the following 
data points were collected:
1. Patient ID
2. Encounter ID
3. Encounter date
4. Gender (man, woman, unknown)
5. Age (in years)
6. Height (in inches)
7. Weight (in pounds)
8. Chief complaint
9. History of present illness (in months)
10. �Pain location (midline lower back, 

referred lower back > lower extremity 
[leg], radicular lower back < lower 
extremity [leg])

11. Pain radiation (left or right buttock, hip, 
thigh, shin, calf, foot)
12. Muscle quality, aching (yes, no)
13. Muscle quality, crushing (yes, no)
14. Muscle quality, dull (yes, no)
15. Muscle quality, spasm (yes, no)
16. Muscle quality tightness (yes, no)
17. L&C quality, constant (yes, no)
18. L&C quality, sharp (yes, no)
19. L&C quality, stiffness (yes, no)
20. DRG quality, burning (yes, no)
21. DRG quality, shooting (yes, no)
22. NR quality, pins and needles (yes, no)
23. NR quality, stinging (yes, no)
24. NR quality, tingling (yes, no)
25. Severity, VAS score (0-10)
26. Severity, ODI scale (0-100)
27. Lumbar facet pain L3 (yes, no)
28. Lumbar facet pain L4 (yes, no)
29. Lumbar facet pain L5 (yes, no)
30. Lumbar facet pain S1 (yes, no)
31. Dermatome L1 (yes, no)
32. Dermatome L2 (yes, no)
33. Dermatome L3 (yes, no)

34. Dermatome L4 (yes, no)
35. Dermatome L5 (yes, no)
36. Dermatome S1 (yes, no)
37. Gluteus minimus trigger point (yes, no)
38. Gluteus medius trigger point (yes, no)
39. Multifidi trigger point (yes, no)
40. �Quadratus lumborum trigger point (yes, 

no)
41. Priformis trigger point (yes, no)
42. Iliolumbar ligament back (yes, no)
43. Iliolumbar ligament front (yes, no)
44. Iliolumbar ligament (yes, no)
45. Posterior sacroiliac ligament (yes, no)
46. Hip ligament (yes, no)
47. Sciatic nerve (yes, no)
48. Sacrospinus ligament (yes, no)
49. Hip pain (yes, no)
50. SI pain (yes, no)
51. Radiation of symptom, right leg (yes, no)
52. Radiation of symptoms, left leg (yes, no)
53. �Radiation of symptoms, right arm (yes, 

no)
54. Radiation of symptoms, left arm (yes, no)
55. Radiation of symptoms, head (yes, no)
56. Radiation of symptoms, neck (yes, no)
57. �Modifying factor, position aggravation, 

climbing stairs (yes, no)
58. �Modifying factor, position aggravation, 

coughing or sneezing (yes, no)
59. �Modifying factor, position aggravation, 

extension (yes, no)
60. �Modifying factor, position aggravation, 

getting in and out of care (yes, no)
61. �Modifying factor, position aggravation, 

laying down (yes, no)
62. �Modifying factor, position aggravation, 

laying on side (yes, no)
63. �Modifying factor, position aggravation, 

leaning forward (yes, no)

64. �Modifying factor, position aggravation, 
sitting (yes, no)

65. �Modifying factor, position aggravation, 
sitting to standing (yes, no)

66. �Modifying factor, position aggravation, 
walking (yes, no)

67. �Modifying factor, position aggravation, 
standing (yes, no)

68. �Modifying factor, position relief, climbing 
stairs (yes, no)

69. �Modifying factor, position relief, coughing 
or sneezing (yes, no)

70. �Modifying factor, position relief, extension 
(yes, no)

71. �Modifying factor, position relief, getting in 
and out of care (yes, no)

72. �Modifying factor, position relief, laying 
down (yes, no)

73. �Modifying factor, position relief, laying on 
side (yes, no)

74. �Modifying factor, position relief, leaning 
forward (yes, no)

75. �Modifying factor, position relief, sitting 
(yes, no)

76. �Modifying factor, position relief, sitting to 
standing (yes, no)

77. �Modifying factor, position relief, walking 
(yes, no)

78. �Modifying factor, position relief, standing 
(yes, no)

79. �Time of day worse (morning, evening, 
none, unknown)

80. Associated symptoms, numbness (yes, no)
81. Associated symptoms, parathesia (yes, no)
82. Associated symptoms, tingling (yes, no)
83. Primary diagnosis
84. Secondary diagnosis
85. National Provider Identifier

Appendix 1. Data points input into the machine learning program.


