
Background: Neuropathic pain following brachial plexus avulsion injury (BPAI) induces plastic 
changes in multiple brain regions associated with somatosensory function, pain, or cognition at the 
group level. The alternation of the whole pattern of resting-state brain activity and the feasibility of 
a brain imaging, information-based diagnosis of pain following BPAI is poorly investigated.

Objectives: To investigate whether brain pattern alternation can  identify neuropathic pain from 
healthy controls at an individual level and the specific regions that can be used as diagnostic 
neuroimaging biomarkers. 

Study Design: Controlled animal study.

Setting: The research took place in the school of rehabilitation science of a university and 
affiliated hospitals. 

Methods: A total of 48 female Sprague-Dawley rats weighing 180 g–200 g were randomly 
assigned to either the BPAI group (n = 24) or normal control group (n = 24). A neuropathic pain rat 
model following BPAI was established in the BPAI group and a mechanical withdrawal threshold 
(MWT) test was performed to verify the presence of neuropathic pain. Micro-positron emission 
tomography with [Fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG-PET) was used to obtain the 
whole brain metabolic activity scans. Multivariate pattern analysis (MVPA) was performed with a 
linear support vector machine (SVM) analysis both in PRoNTo toolbox (based on regions of interests) 
and SearchlightSearchlight approach (based on voxels within the region). 

Results: Compared with baseline status, MWT of the left (intact) forepaw was significantly reduced 
in the BPAI group (P < 0.001). The accuracy of a whole brain image that correctly discriminated BPAI 
from normal controls rats was 87.5% with both the PRoNTo toolbox and SearchlightSearchlight 
method. Pearson’s correlation analysis revealed significant positive correlations (P < 0.05) between 
MWT and the standard taken values of brain regions including the left olfactory nucleus, right 
entorhinal cortex in the PRoNTo toolbox, and bilateral amygdala, right piriform cortex and right 
ventral hippocampus in Searchlight method. 

Limitations: The alternation of metabolic connectivity among regions and functional connectivity 
among different networks were not investigated in the present study.

Conclusions: Our study indicated that MVPA based on the PET scans of rats’ brains  could 
successfully identify neuropathic pain from health condition at the individual level and predictive 
regions could potentially be provided as neuroimaging biomarkers for the neuropathic pain 
following BPAI.

Key words: Neuropathic pain, brachial plexus avulsion injury, PET/CT, neuroimaging, multivariate 
pattern analysis, PRoNTo, SearchlightSearchlight, machine learning
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BBrachial plexus avulsion injury (BPAI) is one of the 
most devastating peripheral nerve injuries in 
the upper extremity. Partial or global avulsion 

of C5, C6, C7, C8 and T1 nerve roots lead to sensory 
and motor dysfunction in the affected limb, which will 
obviously lower the quality of life in patients. Other 
than that, BPAI produces persistent and long-lasting 
painful behavior, which has been a widely concerned 
issue for many years. It is reported that 70%-90% of 
BPAI patients will develop neuropathic pain (1). 

Many studies have suggested that central sen-
sitization plays a critical role in the mechanism of 
neuropathic pain following BPAI. Ligation, crushing 
or avulsion injury of the brachial plexus induces noci-
ceptive input signals to the central nervous system via 
several signal transmission pathways of pain, such as 
the spinothalamic pathway (2). Therefore, these noci-
ceptive input signals induce persistently high reactions 
of neurons in associated pathways and alternation of 
neuroplasticity in several brain regions (2-4). The devel-
opment of novel brain imaging techniques provides us 
the opportunity to investigate the central mechanism 
of neuropathic pain. Our previous studies based on 
functional magnetic resonance imaging (fMRI) also 
showed that neuropathic pain following BPAI induced 
plastic changes in multiple brain regions associated 
with somatosensory function, pain, or cognition at the 
group level (5). 

Multivariate pattern analysis (MVPA) has been pro-
posed as a powerful technique in investigating informa-
tion coding in the brain. It is based on machine learning 
techniques to analyze distributed patterns of brain activ-
ity, which has more advantages than traditional univari-
ate analysis (6). MVPA focuses on predicting a variable 
of interest from the pattern of brain activation/anatomy 
over a set of voxels or regions. Therefore, it has greater 
sensitivity and is capable of detecting subtle distinctions 
(7). MVPA has been used in distinguishing patients from 
healthy patients, including schizophrenia-spectrum dis-
order (8), Alzheimer disease (9), multiple sclerosis, and 
social anxiety disorder (10).

Based on our previous studies, BPAI could steadily 
induce long-lasting neuropathic pain in the affected 
limb of rats. It has also been demonstrated that neu-
ropathic pain induces plastic changes in several brain 
regions (5,11,12). However, there has been no study 
focused on the alternation of the whole pattern of 
resting-state brain activity and the feasibility of brain 
imaging information-based diagnosis of pain following 
BPAI at the individual level. Therefore, we hypothesized 

BPAI could also alter the whole pattern of resting-state 
brain activity and the altered pattern of brain regions 
capable of identifying neuropathic pain in rats from 
healthy controls. 

We established BPAI in rats and obtained whole 
brain metabolic activity by using micro-positron emis-
sion tomography with [Fluorine-18]-fluoro-2-deoxy-D-
glucose (18F-FDG) positron emission tomography (PET). 
MVPA was applied to determine the brain regions 
that play important roles in identifying the brain with 
neuropathic pain following BPAI from that of control 
rats at the individual level. MVPA was performed with 
linear support vector machine (SVM) analysis both in 
the Pattern Recognition for Neuroimaging Toolbox 
(University College, London, United Kingdom) (PRoN-
To) and SearchlightSearchlight approach. Prediction 
performance was evaluated by leave-one-out cross-
validation (LOOCV). This outcome may provide novel 
insights to further understanding neuropathic pain 
following BPAI.

Methods

Animals and Surgery
A total of 48 female Sprague-Dawley rats weigh-

ing 180 g–200 g were provided by Shanghai Slack 
Laboratory Animal Limited Liability Company (Shang-
hai, China). They were raised under a 12 hour light/
dark cycle with unrestricted food and water. Before any 
further intervention or assessment started, they were 
kept in cages for at least 7 days to acclimate them to 
their environment. The rats were randomly assigned to 
either a BPAI group (n = 24) or the normal control (NC) 
group (n = 24). 

Neuropathic pain was induced by unilateral (right) 
brachial plexus avulsion injury as our previous studies 
reported (5,11). Briefly, the rat was anesthetized by intra-
peritoneal injection with sodium pentobarbital (40 mg/
kg), and then placed in prone on a clean surgical table. 
A skin incision was made, and complex muscles were 
divided under an operative microscope (magnification 
×10). The muscles on the vertebral plate and the spinous 
process were removed, and hemilaminectomies from 
C4 to T1 were performed to expose all the nerve roots 
of C5-T1 on the right side. All the right brachial plexus 
nerves were identified under direct vision. Both dorsal 
and ventral rootlets were grasped with forceps and com-
pletely extracted from the spinal cord by traction. A glu-
tin sponge was applied for hemostasis, and the incisions 
were covered with penicillin powder to prevent infection. 
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Behavior Assessment
To confirm the successful induction and main-

tenance of neuropathic pain, all rats were tested for 
mechanical withdrawal threshold (MWT). MWT of the 
left (intact) forepaw was assessed in both groups (3 
days pre-BPAI and on the 7th post-BPAI day) to evalu-
ate the successful establishment of neuropathic pain. 
MWT was assessed by the method described previously 
by using a von Frey filament (13). Rats were placed on a 
metal mesh floor (0.8×0.8 cm2 cells) covered by a trans-
parent plastic box that was kept at 30 cm above the 
floor. After approximately 15 minutes of adaption, we 
fixed its hind limb with a nipper when the forepaw fell 
into the grid. The von Frey filament was used to apply 
a linearly increasing pressure on the forepaw until the 
rat withdrew it. The stimulating duration was 6 sec-
onds-8 seconds, and the interval between stimulations 
was 30 seconds. The test was repeated 5 times, and the 
threshold was described as the lowest force that twice 
evoked a consistent brisk withdrawal response. 

18F-FDG-PET Image Acquisition
PET images of the brain were acquired 7 days after 

BPAI surgery. Images were acquired from a small ani-
mal PET/CT (computed tomography) scanner (Concorde 
Microsystems, Knoxville, TN). 

In order to enhance 18F-FDG uptake in the brain, 
all 48 rats were deprived of food for 12 hours before 
PET/CT scans. 18F-FDG (0.5 mCi/100 g) was injected via 
the tail vein, and then the rats were placed in a quiet 
room for 30 minutes to ensure sufficient take up of 
the tracer. The rat was placed prone position on the 
bed of a PET/CT, which consisted of a 15-cm-diameter 
ring of 96 position sensitive ray scintillation detectors 
and provided a 10.8-cm trans-axial and a 7.8-cm axial 
field of view with an intrinsic resolution of 1.8 mm. 
The timing resolution was less than 1.5 nanoseconds. 
During scanning, an anesthesia dose of 5% halothane 
gas was administered for induction and 1.5% for main-
tenance. CT images were obtained for coregistration 
and attenuation correction. The collected images were 
reconstructed in the OSEM3D mode in a 128 × 128 ma-
trix. The parameters of CT image acquisition were set 
as follows: spherical tube voltage = 80 kV, current = 500 
μA, and acquisition time = 492 seconds.

Image preprocessing
Data preprocessing was conducted with Statistical 

Parametric Mapping 8 toolbox (SPM 8; http://www.fil.ion.
ucl.ac.uk/spm/) based on Matlab 2014a (Mathworks, Inc., 

Natick, MA). Briefly, brain PET/CT images were obtained 
and then converted into the NIFTI format. The voxels 
were upscaled by ×10 times the original size. Then, the 
first image was chosen as a reference and the remaining 
volumes were realigned to generate an aligned set of im-
ages. Next, the aligned PET/CT images were normalized. 
The PET/CT images were reformatted into isotropic voxels 
(2 × 2 × 2 mm3). The intensity was adjusted by the global 
mean. Finally, the images were smoothed by a full width 
at half maximum twice the voxel size.

Multivariate Pattern Analysis (MVPA)

MVPA with Pattern Recognition for Neuroimaging 
Toolbox (PRoNTo)

Linear SVM was employed as a classifier for ma-
chine learning and carried out with the PRoNTo tool-
box, also based on Matlab 2014a (7). The BPAI and 
normal groups were entered as 2 classes with brain PET 
images as inputs. Both whole brain and BPAI-induced 
neuropathic pain related regions of interest (ROI) 
analyses were performed. ROIs included sensorimotor 
cortex (including bilateral somatosensory and motor 
cortices) and pain matrix (including bilateral ante-
rior cingulate cortex [ACC], insular and thalamus) (14). 
LOOCV was performed as follows: in the n subjects (n 
= 48 in the present experiment) cross-validation, N-1 
subjects were used as training data to train the linear 
classifier and the remaining sample was used for test-
ing. The validation procedure was repeated 48 times 
and a different remaining subject was used for testing. 
Statistical significance of the classification was tested 
using a permutation test with 1,000 permutations.

MVPA with Searchlight and Principal Component 
Analysis (PCA) Method

As PRoNTo toolbox is based on ROIs, a modified 
MVPA method is based on all voxels within a region. 
The “SearchlightSearchlight and PCA” approach was 
applied to avoid overlooking any anatomical regions 
(15). It was performed to select an appropriate set of 
voxels to define multivariate features as the input of 
pattern classification analysis. In this approach, the 
smoothed brain PET images generated after the pre-
processing procedure were the inputs of MVPA. We de-
fined a small spherical cluster with a 4 mm radius which 
comprised 33 voxels of 2 mm width in each dimension 
for a given voxel Vi. Then the values of the clusters 
were  extracted for each voxel in the fixed local cluster 
to yield a feature vector for voxel Vi. Feature matrix 
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W (N1*V) of training data set and W (N2*V) of test-
ing data set were obtained. Then PCA was performed 
and the eigenvector was applied to the training data 
feature matrix to reduce the dimensionality, and then 
the data were used to train the classifier. Meanwhile, 
the eigenvector was also applied to the testing data 
feature matrix. Finally, the classification was performed 
with the SVM using LibSVM software (National Taiwan 
University, Taipei, Taiwan) (http://www. csie.ntu.edu.
tw/cjlin/libsvm) (16).

The performance of the linear SVM classifier was 
also evaluated using LOOCV. Therefore, classifier ac-
curacy for Vi was obtained by averaging the accuracies 
achieved for every subject cross-validation procedure. 
This procedure was performed for all voxels to obtain 
a 3-dimension map of classification accuracy at every 
voxel that discriminated between BPAI and normal 
rats. The permutation test was performed to evaluate 
the statistical significance of each voxel and the permu-
tation was repeated 1,000 times. Then classification ac-
curacies were thresholded by P < 0.05. The extent was 
thresholded as 100 voxels and classification accuracy 
was thresholded as 85% (10).

Correlation Analysis
To investigate the most important brain regions 

that discriminate between BPAI and NC were corre-
lated with the severity of neuropathic pain, Pearson 
correlation analysis was applied between the accuracy 
of each voxel in the discriminative brain regions and 
the MWT of the intact forepaw based on the pooled 
BPAI and NC rats.

Study Approval
All procedures were in agreement with the Guide 

for the Care and Use of Laboratory Animals described 
by the US National Institutes of Health and were ap-
proved by the Animal Ethical Committee of Shanghai 
University of Traditional Chinese Medicine (approval 
number: SZY20171211001).

Results

Confirmation of Neuropathic Pain
The MWT of the left (intact) forepaw was 10.04 

± 1.31 g and 4.2 5± 1.33 g in the BPAI group 3 days 
pre-BPAI and 7th post-BPAI day, respectively and 9.79 
±  1.47g, and 9.58 ± 0.99 g similarly in the NC group. 
Compared with baseline status, the MWT significantly 
was reduced in the BPAI group (P < 0.001). No signifi-

cant changes were found between pre-BPAI and post-
BPAI in the NC group. Three of the 24 BPAI rats (12.5%) 
showed autotomic behavior in the right (injured side) 
forepaws, such as biting of the nails and digits. No se-
vere autotomic behavior was observed.

MVPA with PRoNTo Toolbox
With SVM analyses of the 18F-FDG PET brain im-

ages, a significant balanced accuracy (BA) of 87.50% 
was obtained for classification of BPAI and normal rats 
when using the binary mask of whole brain (P = 0.001). 
The classification accuracy (CA) for BPAI rats was up to 
95.83% (P = 0.001) while for normal rats it was 79.17% 
(P = 0.003). The area under the curve (AUC) of the re-
ceiver operating characteristic curve was 0.89. 

Using information from grey matter, white mat-
ter, the pain matrix, the sensorimotor cortex, and the 
thalamus, the BAs in discriminating BPAI from NC were 
87.50%, 87.50%, 87.50%, 87.50% and 83.33%, respec-
tively (Table 1). The CAs and AUCs for each brain region 
are all included in Table 1. Several brain regions show 
greater weights than others. One standard deviation 
(0.87) greater than the average weight (1.05) of all 
regions was considered significant (10). Brain regions 
showing significantly greater weights include bilateral 
entorhinal cortex (EC), mesencephalic region (MR) and 
olfactory nuclei (ON). (Fig. 1).

MVPA with Searchlight + Principal Component 
Analysis Analysis

The accuracy of the whole brain image that cor-
rectly discriminated BPAI from NC rats was also 87.50% 
while applying Searchlight analysis. There were several 
areas presenting significant differences between BPAI 
and NC groups; the brain regions with accuracies of 
85% or higher and cluster sizes of 100 or more are 
shown in Fig. 2 and Table 2. 

Correlation Analysis
In order to investigate the correlation between the 

most discriminating brain regions and the severity of 
neuropathic pain, Pearson’s correlation analysis results 
are shown in Fig. 3. For the discriminating brain regions 
in the PRoNTo analysis, the SUVs in the ROIs of the left 
olfactory nucleus (ON, r = 0.416) and right entorhinal 
cortex (EC, r = 0.4153) were positively correlated with 
the MWT. For the discriminating brain regions in the 
Searchlight and PCA analysis, the SUVs in the regions 
of the bilateral amygdala (left, r = 0.4355; right, r = 
0.4079), right piriform cortex (PC, r = 0.4409) and right 
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ventral hippocampus (VH, r = 0.4078) were also posi-
tively correlated with the MWT.

Discussion

Chronic neuropathic pain has been a frequent 
concern in clinical practice. It is caused by lesion or 
disease of the central nervous system or/and peripheral 
nervous system such as stroke, postherpetic neuralgia, 
spinal cord injury, and traumatic nerve injury (17). The 
mechanism of neuropathic pain is complex, as both the 
peripheral and central nervous  systems are involved 
(18). In order to simulate pain conditions, many surgical 
models, including spinal nerve ligation, spared nerve 
injury sciatic nerve trisection, and BPAI were developed 
and investigated (19,20).

The present study demonstrates neuropathic pain 
following BPAI altered resting-state brain metabolic 
pattern; MVPA using 18F-FDG PET could potentially 
distinguish rats with neuropathic pain following BPAI 
from normal rats with high classification accuracy. The 
current study is the first to apply MVPA to discriminate 
an animal model with neuropathic pain following BPAI 
from normal rats. Our study demonstrated 3 main find-
ings: 1) By both PRoNTo and Searchlight analysis, the 
classification accuracies for neuropathic pain following 
BPAI were both 87.50% and the AUC value of PRoNTo 
analysis was 0.89. It indicated the diagnostic potential 
of the altered metabolic brain pattern. 2) Neuropathic 
pain following BPAI induced the changes of SUVs in sev-
eral brain regions and activity pattern alteration could 
be selected as a classifier feature. 3) Some important 

brain regions could potentially provide neuroimaging 
biomarkers for neuropathic pain in BPAI rats. 

Neuropathic pain after BPAI is one of the deaf-
ferentation pains that share some similar symptoms 
reported in amputees (21-23). BPAI is a common clinical 
problem that often results from traffic accidents, and 
the incidence of persistent pain following this kind of 
injury is quite high (24). Compared with other diseases 
that cause neuropathic pain, studies focused on the 
mechanisms of BPAI are fewer. The rapid development 
of neuroimaging techniques, such as fMRI and PET/CT, 
helped us to explore its central mechanisms. It has been 
widely accepted that the pain experience results from 
a 3-dimensional integration of sensory-discriminative, 
affective-motivational, and cognitive-evaluative axes 
in which several brain regions are involved (25). It is 
extremely important to know that BPAI-induced neu-

Fig. 1. The region weight in the classification of  BPAI and 
NC. 
(A) Weights for the brain regions in descending order. 
The bars of  red color indicate significantly higher weight 
(weight > 1.93). (B) Brain regions with significantly 
higher weight in the classification. The size of  node 
represents the value of  weight of  the brain region. 
BPAI: brachial plexus avulsion injury; NC: normal control.

Table 1. Predictions of  neuropathic pain induced by BPAI. The 
balanced accuracy, classification accuracies and AUC of  ROC.

Brain area
BA

(p value)

CA for 
BPAI

(p value)

CA for NC
(p value)

AUC

Whole brain 87.50% 
(0.001)

95.83% 
(0.001)

79.17% 
(0.003) 0.89

Grey matter 87.50% 
(0.001)

95.83% 
(0.001)

79.17% 
(0.003) 0.86

White matter 87.50% 
(0.001)

95.83% 
(0.001)

79.17% 
(0.005) 0.88

Pain matrix 87.50% 
(0.001)

95.83% 
(0.001)

79.17% 
(0.004) 0.86

Sensorimotor 
cortex

87.50% 
(0.001)

95.83% 
(0.001)

79.17% 
(0.004) 0.85

Thalamus 83.33% 
(0.001)

91.67% 
(0.001)

75.00% 
(0.043) 0.85

BPAI: brachial plexus avulsion injury; NC: normal control; AUC: area 
under curve; ROC: receiver operating characteristic curve; BA: bal-
anced accuracy; CA: classification accuracy.
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roplasticity in several brain regions are associated with 
the occurrence and maintenance of chronic pain as 
well as the absence of sensorimotor function. Based on 
previous studies, there are brain regions responsible for 
sensorimotor function, including the somatosensory 
cortex, the primary motor cortex, the supplementary 
motor area and caudate putamen, and pain-related ar-
eas (26). It is suggested that the primary sensory cortex 
(S1), the secondary sensory cortex (S2), the insula, the 
ACC, the thalamus, and the prefrontal cortex, which 
constitute the pain matrix in the brain, are involved in 
the neuropathic pain (27). The view of pain matrix also 
suggested that pain is multidimensional and produced 
by distributed neural patterns (28). Our previous stud-
ies investigated neuropathic pain among resting-state, 
block-design brain activity and neural metabolism 
studies. Electrical stimulation on the forelimb induced 
decreased activation in the limbic/paralimbic system 

and somatosensory cortex (5). The changes in the am-
plitude of low frequency fluctuations is also found in 
several brain regions involving sensory, cognitive, and 
memory functions (5). The changes in brain metabolism 
also support the previous findings (11,12,29).

As for pain, few adequate biomarkers were widely 
used in clinical practice (30). It is acknowledged that 
pain is multidimensional, involving physical, psycho-
logical, emotional, cognitive and social aspects (31). 
Previous studies have demonstrated that neuropathic 
pain following the injury of the peripheral nervous 
system or central nervous system, is maintained by sen-
sitization of an array of nervous system pathways, from 
spinal sensitization to cerebral sensitization (32,33). 

The development of neuroimaging techniques helps 
us to investigate multiple brain features, which could 
potentially be used as biomarkers to predict the inci-
dence or intensity of chronic pain (34). Marquand et al 
(35) predicted heat pain intensity using Gaussian process 
regression from whole-brain fMRI volumes. Callan et al 
(36) classified patients with chronic low back pain ver-
sus healthy patients with fMRI during evoked electrical 
stimulation on the back; their accuracy rate was 92.3%. 
Cheng et al (37) used regional blood oxygen level depen-
dent signal variability/amplitude of low-frequency oscil-
lations (LFOs) to identify functional brain abnormalities 
in patients with chronic pain that are related to chronic 
pain characteristics. They found that the abnormalities of 
LFOs, in particular within higher frequencies can be used 
to make generalizable inferences about trait neuropathic 
pain (average pain over the previous week) but not state 
pain (current pain) (37). Our finding could also be used to 
monitor the intensity of pain, although further validation 
still needs to be investigated.

Generally, univariate approaches based on neu-
roimaging techniques, could analyze each voxel or 
average across voxels’ signals in a region, which have 
limitations to the researches. More recently, MVPA has 
become a feasible technique in the analysis of neu-
roimaging, which could analyze distributed patterns 
of brain activity or anatomy using machine learning 
classifiers (38,39). It has been widely used in several 
studies ranging from decoding mental states to clinical 
applications (10,40-44). For example, Polyn et al (45) 
applied MVPA to predict the patterns of cortical activ-
ity associated with memory search during free recall 
tasks. MVPA with fMRI also allows the decoding of pat-
terns of brain response in different categories of the 
viewed objects (40,46). Moreover, the capacity of dis-
criminating control and experimental groups has been 

Fig. 2. The spatial distribution of  accuracy map for 
discriminating between BPAI and NC groups. 
Red clusters represent accuracy of  85% or higher with 
threshold cluster size of  100 voxels or more.
BPAI: brachial plexus avulsion injury; NC: normal control; A: 
anterior; P: posterior; R: right; L: left; OFC: orbitofrontal cortex; 
Acbc: : PC: piriform cortex; VP: ventral pallidum; MC: motor 
cortex; SC: somatosensory cortex; IPAC: interstitial nucleus of 
the posterior limb of the anterior commissure; CPu: caudate pu-
tamen; Amy: amygdala; PAC: parietal association cortex; PDH: 
posterodorsal hippocampus; VH: ventral hippocampus; MR: 
mesencephalic region; VC: visual cortex; EC: entorhinal cortex.
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proven in many clinical conditions, which suggests that 
MVPA can potentially be used as a diagnostic tool (47). 
Feng (10) suggested that the classification accuracy 
of patients  into healthy and social anxiety disorder 
patients, using functional connectivity MRI, achieved 
82.5% (10). Christian (48) suggested that multivariate 
analysis showed superior diagnostic performance with 
high classification accuracy in discriminating healthy 
patients and patients with Alzheimer disease rather 
than univariate analysis. MVPA with linear SVM also 
successfully identified the brain with neuropathic pain 
following spinal nerve ligation in an individual rat 
model using 18F-FDG PET (49).

The present study shows that MVPA achieved high 
classification accuracy using both PRoNTo and Search-
light analysis. Although the involved brain regions in 
the 2 analyses differed, these regions were mostly con-
sistent with previous studies. In the PRoNTo analysis, 
bilateral EC, MR, and ON showed significantly greater 
weights; the left EC had the highest weight. In Search-
light analysis, the regions that had the highest accuracy 
included the right amygdala, right PC, right VH, left 
somatosensory cortex (SC), left interstitial nucleus of 
the posterior limb of the anterior commissure (IPAC), 
left visual cortex (VC), left parietal association cortex 

(PAC), left EC, left ventral pallidum (VP) and left orbito-
frontal cortex (OFC). Prefrontal-limbic-brainstem, olfac-
tory, visual and sensory networks were involved, which 
indicated the multidimensional characteristics of pain 
perception and distributed representation in the brain. 
Pearson correlation analysis showed that the SUVs of 
the left ON, right EC, bilateral Amygdala, right PC and 
right VH were positively correlated with the MWT.

ON and PC constituted part of the primary olfac-
tory cortex. Previous studies have focused on the PC; 
far fewer have examined ON and the olfactory bulb. PC 
was considered associating with encoding information 
about the chemical attributes of odorants and perceptu-
al quality of odors in previous studies (50-52). ON may be 
involved in odor memory and localization, which allows 
PC to perform more associative functions (53,54). Zhou 
et al (55) have suggested that PC has strong functional 
connectivity with motor planning areas, including the 
caudate/putamen and the primary motor cortex, which 
indicated that PC may be involved in combining olfac-
tory information with motor planning (55). In addition, 
studies also found that the temporal piriform cortex was 
connected to the brainstem raphe magnus and posterior 
insula in humans, areas implicated in pain processing 
(56) and respiratory modulations (57). 

Table 2. The most important brain regions discriminating BPAI and NC groups in searchlight + PCA method.

Brain regions
Peak 

accuracy (%)
Cluster size 

(voxels)
MNI coordinates (mm)

p value
x y z

Right amygdala 87.50 707 42 -30 -19 0.001

Right piriform cortex 87.50 707 61 -38 -21 0.001

Left somatosensory cortex 87.50 567 -54 3 -61 0.001

Left amygdala 87.50 514 -44 -32 -13 0.001

Left IPAC 87.50 514 -42 -26 -33 0.001

Left visual cortex 87.50 295 -54 24 9 0.001

Left parietal association cortex 87.50 242 -34 28 -3 0.001

Left entorhinal cortex 87.50 177 -57 -22 29 0.001

Left ventral pallidum 87.50 175 -28 -40 -63 0.001

Left orbitofrontal cortex 87.50 175 -38 -17 -67 0.001

Right ventral hippocampus 87.50 123 40 -38 5 0.001

Left posterodorsal hippocampus 85.42 295 -57 3 3 0.001

Right caudate putamen 85.42 707 44 -11 -27 0.001

Left AcbC 85.42 175 -18 -26 -73 0.001

Left internal capsule 85.42 514 -46 -11 -11 0.001

Left motor cortex 85.42 567 -27 34 -58 0.001

Right IPAC 85.42 707 38 -27 -39 0.001

BPAI: brachial plexus avulsion injury; NC: normal control; PCA: principal component analysis; MNI: Montreal Neurological Institute; Acbc: 
nucleus accumbens-core; IPAC: interstitial nucleus of the posterior limb of the anterior commissure
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EC and the hippocampus belong to the limbic sys-
tem, which is considered to be involved in emotional 
processing and providing relevant and motivational 
information for complex behaviors regulation (58). EC 
has long been considered as a main station that pro-
vides pain signals and other afferent input to the hip-
pocampus (59). Although the exact pathway between 
EC and the hippocampus formation is still unclear, the 
Papez circuit and cortico-limbic pathway might play 
an important role in it. The Papez circuit, proposed 
by James Papez in 1937, includes the hippocampus 
subiculum, fornix, mammillary bodies, mammillotha-
lamic tract, anterior thalamic nucleus, cingulum, and 
EC, and finally comes back to hippocampus formation 
(HF) (60,61). The circuit showed that some pain-related 
regions were connected with EC and HF, such as the 
ACC. The cortico-limbic pathway was from the primary 
and secondary somatosensory cortices to insular and 
parietal cortical structures, then to the amygdala, the 
perirhinal cortex and the hippocampus, and finally 

projects to regions that were directly activated by the 
spinothalamic pathways (62,63). In the cortico-limbic 
pathway, EC might receive pain signal input from the 
insular and convey it to HF (63,64). Our previous study 
also suggested that the entorhinal-hippocampus path-
way might play an important role in persistent periph-
eral pain processing of BPAI (5). 

The amygdala also belongs to the limbic system, 
which is involved in emotions and affective disorders 
(65,66). It has been widely accepted that the amygdala 
might be a critical node in the emotional affective as-
pects of pain (67,68). It has extensive afferent and ef-
ferent connections with multiple cortical and subcorti-
cal regions (69). It receives excitatory inputs from visual, 
auditory, somatosensory (pain), olfactory, and taste 
systems and projects to the hypothalamus, bed nucleus 
of the terminalis, midbrain periaqueductal gray, pons, 
medulla, prefrontal cortex, olfactory cortex, and brain 
stem (70). The connectivity between the olfactory cor-
tex and amygdala also suggest that the olfactory cortex 
might play a role in the processing of emotion.

Our experiment has some limitations. First, the nat-
ural differences between humans and rodents should 
not be neglected. Further studies in patients with BPAI 
still need to be investigated. Secondly, although our 
study provides notable information about the regions 
that represent the alternation of neuropathic pain 
following BPAI, it is not clear how the regions change 
the inter-connectivity. Lastly, our study indicates that 
altered regions are involved with several networks; 
the changes among different networks such as default 
mode network still need further investigation.

Conclusion

Our study demonstrates that multivariate pattern 
analysis based on PET scans of rats’ brains can success-
fully discriminate neuropathic pain following BPAI 
from the health condition on an individual level. Both 
of the 2 approaches, which are based on ROIs or whole 
voxel of brain regions, showed significant discrimina-
tive performance. Alternation of the pattern of brain 
resting-state activity could potentially be used as a 
diagnostic tool in the future.
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